Influence of Length and Amino Acid Composition on Dimer Formation of Immunoglobulin based Chimera

Author:

Patidar Manoj1,Yadav Naveen1,Dalai Sarat K.1

Affiliation:

1. Institute of Science, Nirma University, Ahmedabad-382481, India

Abstract

Background: The dimeric immunoglobulin (Ig) chimeras used for drug targeting and delivery are preferred biologics over their monomeric forms. Designing these Ig chimeras involves critical selection of a suitable Ig base that ensures dimer formation. In the present study, we systematically analyzed several factors that influence the formation of dimeric chimera. We designed and predicted 608 cytokine-Ig chimeras where we tested the contributions of (1) different domains of Ig constant heavy chain, (2) length of partner proteins, (3) amino acid (AA) composition and (4) position of cysteine in the formation of homodimer. Method: The sequences of various Ig and cytokines were procured from Uniprot database, fused and submitted to COTH (CO-THreader) server for the prediction of dimer formation. Contributions of different domains of Ig constant heavy chain, length of chimeric proteins, AA composition and position of cysteine to the homodimer formation of 608 cytokine-Ig chimeras were tested. Various in silico approaches were adopted for validating the in silico findings. Experimentally we also validated our approach by expressing the chimeric design of shorter cytokine with Ig domain in CHO cells and analyzing the protein by SDS-PAGE. Results: Our results advocate that while the CH1 region and the Hinge region of Ig heavy chain are critical, the length of partner proteins also crucially influences homodimer formation of the Ig-based chimera. We also report that the CH1 domain of Ig is not required for dimer formation of Ig based chimera in the presence of larger partner proteins. For shorter partner proteins fused to CH2-CH3, careful selection of partner sequence is critical, particularly the hydrophobic AA composition, cysteine content & their positions, disulphide bond formation property, and the linker sequences. We validated our in silico observation by various bioinformatics tools and checked the ability of chimeras to bind with the receptors of native protein by docking studies. As a proof of concept, we have expressed the chimeric proteins in CHO cells and found that our design favors the synthesis of dimeric proteins. Conclusion: Our structural prediction study suggests that extra amino acids in the range of 15-20 added to the CH2 domain of Ig is a critical requirement to make homodimer. This information from our study will have implication in designing efficacious homodimeric chimera.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3