Tumor Reversion: Mesenchymal-Epithelial Transition as a Critical Step in Managing the Tumor-Microenvironment Cross-Talk

Author:

Bizzarri Mariano1,Cucina Alessandra2,Proietti Sara2

Affiliation:

1. Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy

2. Department of Surgery “Pietro Valdoni”, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy

Abstract

Tumour reversion represents a promising field of investigation. The occurrence of cancer reversion both in vitro and in vivo has been ascertained by an increasing number of reports. The reverting process may be triggered in a wide range of different cancer types by both molecular and physical cues. This process encompasses mandatorily a change in the cell-stroma interactions, leading to profound modification in tissue architecture. Indeed, cancer reversion may be obtained by only resetting the overall burden of biophysical cues acting on the cell-stroma system, thus indicating that conformational changes induced by cell shape and cytoskeleton remodelling trigger downstream the cascade of molecular events required for phenotypic reversion. Ultimately, epigenetic regulation of gene expression (chiefly involving presenilin-1 and translationally controlled tumour protein) and modulation of a few critical biochemical pathways trigger the mesenchymal-epithelial transition, deemed to be a stable cancer reversion. As cancer can be successfully ‘reprogrammed’ by modifying the dynamical cross-talk with its microenvironment thus the cell-stroma interactions must be recognized as targets for pharmacological intervention. Yet, understanding cancer reversion remains challenging and refinement in modelling such processes in vitro as well as in vivo is urgently warranted. This new approach bears huge implications, from both a theoretical and clinical perspective, as it may facilitate the design of a novel anticancer strategy focused on mimicking or activating the tumour reversion pathway.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3