A Novel Polytope Algorithm based On Nelder-mead Method for Localization in Wireless Sensor Network

Author:

Gumaida Bassam1ORCID,Ibrahim Adamu Abubakar1ORCID

Affiliation:

1. Department of Computer Science, International Islamic University Malaysia, 50728, Kuala Lumpur, Malaysia

Abstract

Background and Objective: Magnificent localization precision and low operating expenses are the main keys and essential issues to managing and operating outdoor wireless sensor networks. This work proposes a novel and rigorous efficiency localization algorithm utilizing a simplex optimization approach for node localization. This novel optimization method is a direct search approach, and is usually directed to solve nonlinear optimization problems that may not have wellknown derivatives, and it is called the Nelder-mead Method (NMM). Methods: It is suggested that the objective function that will be optimized using NMM is the mean squared error of the range of all neighboring anchor nodes installed in the studied WSNs. This paper emphasizes employing a ranging technique called Received Signal Strength Indicator (shortly RSSI) to calculate the length of distances among all the nodes of WSNs. Results: Simulation results perfectly showed that the suggested localization algorithm based on NMM can carry out a better performance than that of other localization algorithms utilizing other optimization approaches, including a particle swarm optimization, ant colony (ACO) and bat algorithm (BA). This obviously appeared in several metrics of performance evaluation, such as accuracy of localization, node localization rate, and implementation time. Conclusions: The proposed algorithm that utilized NMM is more functional to enhance the precision of localization because of particular characteristics that are the flexible implementation of NMM and the free cost of using the RSSI technique.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3