Current Advances and Applications of Diagnostic Microfluidic Chip: A Review

Author:

Katyal Garima1ORCID,Pathak Anuj1ORCID,Grover Parul1ORCID,Sharma Vaibhav1ORCID

Affiliation:

1. KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR Ghaziabad, 201206, Uttar Pradesh, India

Abstract

Background: As a developed technology, microfluidics now offers a great toolkit for handling and manipulating suspended samples, fluid samples, and particles. A regular chip is different from a microfluidic chip. A microfluidic chip is made of a series of grooves or microchannels carved on various materials. This arrangement of microchannels contained within the microfluidic chip is connected to the outside by inputs and outputs passing through the chip. Objective: This review includes the current progress in the field of microfluidic chips, their advantages and their biomedical applications in diagnosis. Methods: The various manuscripts were collected in the field of microfluidic chip that have biomedical applications from the different sources like Pubmed,Science direct and Google Scholar, out of which some were relevant and considered for the present manuscript. Results: Microfluidic channels inside the chip allow for the processing of the fluid, such as blending and physicochemical reactions. Aside from its practical, technological, and physical benefits, microscale fluidic circuits also improve researchers' capacity to do more accurate quantitative measurements while researching biological systems. Microfluidic chips, a developing type of biochip, were primarily focused on miniaturising analytical procedures, especially to enhance analyte separation. Since then, the procedures for device construction and operation have gotten much simpler. Conclusion: For bioanalytical operations, microfluidic technology has many advantages. As originally intended, a micro total analysis system might be built using microfluidic devices to integrate various functional modules (or operational units) onto a single platform. More researchers were able to design, produce, and use microfluidic devices because of increased accessibility, which quickly demonstrated the probability of wide-ranging applicability in all branches of biology.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3