Prediction of Age-Related MicroRNA Signature in Mesenchymal Stem Cells by using Computational Methods

Author:

Salehi Mohammad1,Darroudi Majid2,Musavi Maryam34,Momtazi-Borojeni Amir Abaas34

Affiliation:

1. Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

2. Nuclear Medicine, Research Center Mashhad University of Medical Sciences, Mashhad, Iran

3. Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran

4. Department of Medical Biotechnology, Neyshabur University of Medical Sciences, Neyshabur, Iran

Abstract

Background: Aging is a phenomenon which occurs over time and leads to the decay of living organisms. During the progression of aging, some age-associated diseases including cardiovascular disease, cancers, and neurological, mental, and physical disorders could develop. Genetic and epigenetic factors like microRNAs, as one of the post-transcriptional regulators of genes, play important roles in senescence. The self-renewal and differentiation capacity of mesenchymal stem cells makes them good candidates for regenerative medicine. Objective: The objective of this study is to evaluate senescence-related miRNAs in human MSCs using bioinformatics analysis. Methods: In this study, the Gene Expression Omnibus (GEO) database was used to investigate the senescence-related genome profile. Then, down-regulated genes were selected for further bioinformatics analysis with the assumption that their decreased expression is associated with an increased aging process. Considering that miRNAs can interfere in gene expression, miRNAs complementary to these genes were identified using bioinformatics software. Results: Through bioinformatics analysis, we predicted hsa-miR-590-3p, hsa-miR-10b-3p, hsamiR- 548 family, hsa-miR-144-3p, and hsa-miR-30b-5p which involve in cellular senescence and the aging of human MSCs. Conclusion: miRNA mimics or anti-miRNA agents have the potential to be used as anti-aging tools for MSCs.

Publisher

Bentham Science Publishers Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3