Conditioned Medium Treatment for the Improvement of Functional Recovery after Spinal Cord Injury: A Meta-Analysis Study

Author:

Hajisoltani Razieh1,Taghizadeh Mona1,Hamblin Michael R2,Ramezani Fatemeh1

Affiliation:

1. Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran

2. Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa

Abstract

Background:: While there is no certain treatment for spinal cord injury (SCI), stem cellbased therapy may be an attractive alternative, but the survival and differentiation of cells in the host tissue are poor. Conditioned medium (CM) has several beneficial effects on cells. Objective:: In this meta-analysis study, we examined the effect of CM on SCI treatment. Methods:: After searching on MEDLINE, SCOPUS, EMBASE, and Web of Science, first and secondary screening were performed based on title, abstract, and full text. The data were extracted from the included studies, and meta-analysis was performed using STATA.14 software. A standardized mean difference (SMD) with a 95% confidence interval was used to report findings. Quality control and subgroup analysis were also performed. Results:: The results from 52 articles and 61 separate experiments showed that CM had a significantly strong effect on improving motor function after SCI (SMD = 2.58; 95% CI: 2.17 to 2.98; p < 0.001) and also analysis of data from 12 articles demonstrated that CM reduced the expression of GFAP marker (SMD = -4.16; p < 0.0001) compared to SCI group without any treatment. Subgroup analysis showed that treatment with CM of neural stem cells was better than CM of mesenchymal stem cells. It was more effective after a mild lesion than a moderate or severe one. The improvement was more pronounced with <4 weeks than >4 weeks follow-up. Conclusion:: CM had a significant effect in improving motor function after SCI, especially in cases of mild lesions. It has been observed that if CM originates from the neural stem cells, it has a more significant effect than mesenchymal cells.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3