Effect of miR-98/IL-6/STAT3 on Autophagy and Apoptosis of Cardiac Stem Cells Under Hypoxic Conditions In vitro

Author:

Li Xueyuan1,Zhang Yang2,Zhang Guangwei1

Affiliation:

1. Department of Cardiology, The First Hospital of China Medical University, China

2. Department of Hand Surgery, The Central Hospital of Shenyang Medical College, China

Abstract

Background: The heavy burden of cardiovascular diseases demands innovative therapeutic strategies dealing with cardiomyocyte loss. Cardiac Stem Cells (CSCs) are renewable cells in the myocardium with differentiation and endocrine functions. However, their functions are significantly inhibited in conditions of severe hypoxia or inflammation. The mechanism of hypoxia affecting CSCs is not clear. Interleukin-6 (IL-6) appears active in both hypoxic and inflammatory microenvironments. The aim of this study was to explore whether IL-6 is related to CSC apoptosis and autophagy under severe hypoxia. Methods: In this study, rat CSCs were extracted by alternate digestion. The interaction of miR-98 and IL-6 mRNA was detected by the dual luciferase method, and qPCR was applied to confirm the effect of miR-98 on IL-6 expression. The effect of IL-6 on CSC apoptosis was measured by flow cytometry and the effect of IL-6 on CSC autophagy by transmission electron microscopy. The western blot method was applied to detect the effect of IL-6 on the expressions of proteins related to apoptosis and autophagy. ANOVA and Dunnett T3's test were employed in the statistical analysis. When p < 0.05, the difference was significant. Results: Under severe hypoxia conditions, IL-6 increased CSC apoptosis and decreased p-STAT3 expression significantly. CSC apoptosis increased significantly after inhibition of the STAT3 signaling pathway under severe hypoxia. IL-6 could also significantly inhibit CSCs’ autophagy and block their autophagy flow under severe hypoxic conditions. Meanwhile, it was confirmed that miR-98 had a binding site on IL-6 mRNA and miR-98 significantly inhibited IL-6 mRNA expression in CSCs under severe hypoxic conditions. Conclusion: miR-98/IL-6/STAT3 has been found to be involved in the regulation of CSCs’ apoptosis and autophagy under severe hypoxic conditions and there might be a mutual linkage between CSCs’ apoptosis and their autophagy. result: Under severe hypoxia conditions, IL-6 increased CSCs’ apoptosis and decreased CSCs’ p-STAT3 expression significantly. CSCs’ apoptosis increased significantly after inhibition of the STAT3 signaling pathway under severe hypoxia. IL-6 could also significantly inhibit CSCs’ autophagy and block their autophagy flow under severe hypoxic conditions. Meanwhile, It was confirmed that miR-98 had a binding site on IL-6 mRNA and miR-98 significantly inhibited IL-6 mRNA expression in CSCs under severe hypoxic conditions.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3