In-Silico Investigation of Ginseng Phytoconstituents as Novel Therapeutics Against MAO-A

Author:

Choudhary Diksha1,Kaur Rajwinder1,Rani Nidhi1,Singh Thakur Gurjeet1,Kumar Bhupinder2

Affiliation:

1. Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India

2. Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, Garhwal, Uttarakhand, 246174, India

Abstract

Background: Ginseng (Panax ginseng) is a herb of medicinal and nutritional importance. Ginseng has been used since ancient times for the treatment of numerous ailments as it has many therapeutic properties. Several phytoconstituents are present in Panax ginseng that possess a variety of beneficial pharmacological properties. Objective: To explore the potential of phytoconstituents of Panax ginseng in the treatment of depression, a molecular modeling technique was utilized targeting monoamine oxidase-A (MAOA). Methods: A total of sixty-one phytoconstituents of ginseng were drawn with the help of ChemBioDraw Ultra 12.0 software and PDBs for MAO-A enzyme were retrieved from the RCSB PDB database. The prepared ligands were screened for MAO-A properties using the software Molegro Virtual Docker (MVD 2010.4.1.0). All the prepared ligands were evaluated for drug-likeliness properties using Swiss ADME. Result: Among the docking studies of 60 Ginseng phytochemicals including one standard, 15 phytoconstituents with the highest dock score and better binding interactions were selected further for absorption, distribution, metabolism and excretion (ADME) studies. Stachyose (-227.287, 17 interactions), Raffinose (-222.157, 14 interactions), and Ginsenoside Rg1 (-216.593, 10 interactions) were found to possess better interactions as compared to Clorgyline taken as a standard drug. Conclusion: Stachyose was found to be the most potent inhibitor of MAO-A enzyme under investigation and can be a potential lead molecule for the development of newer phytochemical-based treatment of depression.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3