Gd-EOB-DTPA-enhanced MRI Image Characteristics and Radiomics Characteristics Combined with Machine Learning for Assessment of Functional Liver Reserve

Author:

Zhu Xin-Yu1,Zhang Yu-Rou1,Guo Li1

Affiliation:

1. Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Yunnan-Myanmar Avenue, Kunming, Yunnan Province, China

Abstract

Objective: To investigate the feasibility of image characteristics and radiomics combined with machine learning based on Gd-EOB-DTPA-enhanced MRI for functional liver reserve assessment in cirrhotic patients. Materials and Methods: 123 patients with cirrhosis were retrospectively analyzed; all our patients underwent pre-contrast MRI, triphasic (arterial phase, venous phase, equilibrium phase) Gd-EOB-DTPA dynamic enhancement and hepatobiliary phase (20 minutes delayed). The relative enhancement (RE) of the patient's liver, the liver-spleen signal ratio in the hepatobiliary phase (SI liver/ spleen), the liver-vertical muscle signal ratio in the hepatobiliary phase (SI liver/ muscle), the bile duct signal intensity contrast ratio (SIR), and the radiomics features were evaluated. The support vector machine (SVM) was used as the core of machine learning to construct the liver function classification model using image and radiomics characteristics, respectively. Results: The area under the curve was the largest in SIR to identify Child-Pugh group A versus Child-Pugh group B+C in the image characteristics, AUC = 0.740, and Perc. 10% to identify Child-Pugh group A versus Child-Pugh group B+C in the radiomics characteristics, AUC = 0.9337. The efficacy of the SVM model constructed using radiomics characteristics was better, with an area under the curve of 0.918, a sensitivity of 95.45%, a specificity of 80.00%, and an accuracy of 89.19%. Conclusion: The image and radiomics characteristics based on Gd-EOB-DTPA-enhanced MRI can reflect liver function, and the model constructed based on radiomics characteristics combined with machine learning methods can better assess functional liver reserve.

Funder

Medical Discipline Leader Training Project in Yunnan Province

Kunming Medical University 2023 Master's Degree Innovation Fund Projects

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3