Network Pharmacology and Molecular Docking to Explore the Mechanism of Compound Qilian Tablets in Treating Diabetic Retinopathy

Author:

Jia Jiangwei12,Liu Bo1,Wang Xin1,Ji Fenglan1,Wen Fuchun1,Song Lianlian1,Xu Huibo1,Ding Tao1

Affiliation:

1. Pharmacodynamic and Toxicological Evaluation Center, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin, China

2. School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China

Abstract

Background: Diabetic Retinopathy (DR) is one of the common chronic complications of diabetes mellitus, which has developed into the leading cause of irreversible visual impairment in adults worldwide. The Compound Qilian Tablets (CQLT) were developed in China for the treatment and prevention of DR, but their mechanism of action is still unclear. Objective: In the present study, network pharmacology, molecular docking, and in vivo validation experiments were used to investigate the active components and molecular mechanisms of CQLT against DR. Methods: The active components and targets of CQLT were collected through the TCSMP database, and the targets of DR were obtained from GeneCards, OMIM, and Drugbank databases. We established a protein-protein interaction network using the STRING database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted using the Metascape database. Molecular docking using AutoDock Vina was performed to investigate the interactions between components of CQLT and core targets. Moreover, we selected ZDF rats to establish a DR model for the experimental studies. Results: 39 active components and 448 targets in CQLT were screened, among which 90 targets were shared with DR. KEGG pathway enrichment analysis identified 181 pathways. The molecular docking results demonstrated that the main active components had strong binding ability to the core targets. The results from animal experiments indicate that the mechanism of CQLT against DR is associated with inhibiting the retinal mTOR/HIF-1α/VEGF signaling pathway, alleviating the inflammatory response, suppressing retinal neovascularization, and protecting the function and morphology of the retina. Conclusion: The present study preliminarily explored the mechanism of CQLT in treating DR and demonstrated that CQLT exerts anti-DR effects through multiple components, multiple targets, and multiple pathways. These findings suggest that CQLT shows promise as a potential therapeutic agent for DR and could contribute to developing novel treatments.

Publisher

Bentham Science Publishers Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3