Medical Imaging and Analysis of Thermal Necrosis During Bone Grinding: Implementation of Non-dominated Sorting Genetic Algorithm (NSGA-III) in Healthcare

Author:

Babbar Atul1ORCID,Jain Vivek2,Gupta Dheeraj2,Kumar Vidyapati3,Pathri Bhargav Prajwal4,Sharma Ankit5

Affiliation:

1. Department of Mechanical Engineering, SGT University, Gurugram (Haryana)-122505, India

2. Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab, India

3. Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721302, India

4. School of Technology, Woxsen University, Hyderabad-502345, India

5. Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India

Abstract

Background:: Medical imaging plays a key role in neurosurgery; thereby, imaging and analysis of the soft and hard tissues during bone grinding is of paramount importance for neurosurgeons. Bone grinding, a minimally invasive operation in the field of neurosurgery amid osteotomy, has been used during brain cancer surgery. Aims and Objectives:: With increasing attention to neural tissue damage in machining operations, imaging of these neural tissues becomes vital and reducing temperature is imperative. Methods:: In the present study, a novel attempt has been made to perform the imaging of bone tissues during the bone grinding procedure and further investigate the relationship between rotational speed, feed rate, depth of cut with cutting forces, and temperature. The role of cutting forces and temperature has been addressed as per the requirements of neurosurgeons. Firstly, a three-factor, three-level design was constructed with a full factorial design. Regression models were employed to construct the models between input parameters and response characteristics. Medical imaging techniques were used to perform a thorough analysis of thermal necrosis and damage to the bone. Subsequently, the non-dominated sorting genetic algorithm (NSGA-III) was used to optimize the parameters for reduction in the cutting forces and temperature during bone grinding while reducing neural tissue damage. Results:: The results revealed that the maximum value of tangential force was 21.32 N, thrust force was 9.25 N, grinding force ratio was 0.453, torque was 4.55 N-mm, and temperature was 59.3°C. It has been observed that maximum temperature was generated at a rotational speed of 55000 rpm, feed rate of 60 mm/min, and depth of cut of 1.0 mm. Histopathological imaging analysis revealed the presence of viable lacunas, empty lacunas, haversian canals, and osteocytes in the bone samples. Furthermore, the elemental composition of the bone highlights the presence of carbon (c) 59.49%, oxygen (O) 35.82%, sodium (Na) 0.11%, phosphorous 1.50%, sulphur 0.33%, chlorine 0.98%, and calcium 1.77%. Conclusion:: The study revealed that compared to the initial scenario, NSGA-III can produce better results without compromising the trial results. According to a statistical study, the rise in temperature during bone grinding was significantly influenced by rotating speed. The density of osteocytes in the lacunas was higher at lower temperatures. Furthermore, the results of surface electron microscopy and energy dispersive spectroscopy revealed the presence of bone over the surface of the grinding burr, which resulted in the loading of the grinding burr. The results of the present investigation will be beneficial for researchers and clinical practitioners worldwide.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3