Improving Efficiency of Brain Tumor Classification Models Using Pruning Techniques

Author:

Sivakumar M.1,Padmapriya S.T.2ORCID

Affiliation:

1. Department of Computer Science and Engineering, Thiagarajar College of Engineering, Madurai, Tamil Nadu, India

2. Department of Applied Mathematics and Computational Science, Thiagarajar College of Engineering, Madurai, Tamil Nadu, India

Abstract

Background: This research investigates the impact of pruning on reducing the computational complexity of a five-layered Convolutional Neural Network (CNN) designed for classifying MRI brain tumors. The study focuses on enhancing the efficiency of the model by removing less important weights and neurons through pruning. Objective: This research aims to analyze the impact of pruning on the computational complexity of a CNN for MRI brain tumor classification, identifying optimal pruning percentages to balance reduced complexity with acceptable classification performance Methods: The proposed CNN model is implemented for the classification of MRI brain tumors. To reduce time complexity, weights and neurons of the trained model are pruned systematically, ranging from 0 to 99 percent. The corresponding accuracies for each pruning percentage are recorded to assess the trade-off between model complexity and classification performance. Results: The analysis reveals that the model's weights can be pruned up to 70 percent while maintaining acceptable accuracy. Similarly, neurons in the model can be pruned up to 10 percent without significantly compromising accuracy. Conclusion: This research highlights the successful application of pruning techniques to reduce the computational complexity of a CNN model for MRI brain tumor classification. The findings suggest that judicious pruning of weights and neurons can lead to a significant improvement in inference time without compromising accuracy.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3