Computational Chemistry: Prediction of Compound Accessibility of Targeted Synthesized Compounds

Author:

Babu Visagamoorthy1,Ahmed Sumeer2,Rahiman A. K.2,Kawsar Sarkar M. A.3,Berredjem Malika4,Bhat Ajmal R.5ORCID,Basha K. Anver6

Affiliation:

1. Research & Development Centre, BharathiarUniversity, Coimbatore, India

2. Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai 600014, India

3. Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, University of Chittagong, Chittagong, Bangladesh

4. Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, BadjiMokhtar - Annaba University, Box 12- 23000 Annaba, Algeria

5. Department of Chemistry, RTM Nagpur University, Nagpur- 440033, India

6. P G and Research Department of Chemistry, C. Abdul Hakeem College, Melvisharam - 632 509, Tamil Nadu, India

Abstract

Introduction: In the present work, a series of novel pyridine carboxamides 3(a-h) were synthesized and screened with antibacterial activity. This research explores the application of Density Functional Theory (DFT) in studying biological systems at the quantum mechanical level, particularly in the context of drug design. DFT offers a streamlined approach to quantum mechanical calculations, making it indispensable in various scientific fields, and for its exceptional accuracy, reduced computational time, and cost-effectiveness has become a pivotal tool in computational chemistry. This research work highlights the integration of DFT studies with POM analyses, which effectively identify pharmacophoric sites. Moreover, the research incorporates in silico pharmacokinetics analyses to assess the pharmacokinetic properties of synthesized compounds. The paper focused on a series of compounds previously reported, aiming to provide a comprehensive understanding of their electronic structure, pharmacophoric features, and potential as drug candidates. This study not only contributes to the evolving field of computational chemistry but also holds implications for advancing drug design processes by combining theoretical insights with practical analyses. Methods: The compounds 3(a-h) were subjected to Density Functional Theory (DFT) computations using the B3LYP/6-31G(d) basis set to get optimized geometric structures. GaussViewis used to display the contributions of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). The determination of energy gaps was conducted using Gaussian 09W. The pharmacokinetic profiles were evaluated using existing techniques such as Osiris, Petra, and Molinspiration, as well as a novel platform called POM Analyse Results: The computational studies DFT, POM and in silico pharmacokinetics studies revealed that the studied compounds are biologically active, non-toxic, non-carcinogenic in nature and may be utilized as drug candidates. Conclusion: Density functional theory (DFT) investigations emphasize the exceptional stability of complex 3d, which possesses the biggest energy gap and the lowest softness. In contrast, compound 3h demonstrates poorer stability among the tested compounds, characterized by the lowest energy gap and the highest softness values. These findings are further substantiated by absolute energy calculations. The negligible energy difference in compound 3h indicates an increased transfer of electric charge within the molecule, which is associated with its enhanced biological effectiveness. The drug-likeness of the compounds is confirmed by POM and in silico pharmacokinetics investigations, with compound 3h being identified as the most biologically active among the investigated compounds.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3