Design, Synthesis, Antitumor Activity Evaluation, and Molecular Dynamics Simulation of Some 2-Aminopyrazine Derivatives

Author:

Cui Hangrui1,Zhang Ruifeng1,Xiong Xin1,Cui Zhiwen1,Min Zhijian2,Liu Jinglong1,Li Xunping1,Min Zhenli1

Affiliation:

1. Institute of Advanced Pharmaceutical Technology, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China

2. The First Clinical College, Lanzhou University, Lanzhou, 730099, China

Abstract

Objective:: Cancer poses a great threat to human health, and effective drugs to treat it are always needed. Several compounds containing a 2-aminopyrazine framework have been identified as antitumor agents with SHP2 inhibition activities. This current work aimed to search for more potent novel compounds possessing a 2-aminopyrazine moiety with antitumor activities. Methods:: A series of 12 novel 2-aminopyrazine derivatives was synthesized, and their structures were confirmed by spectroscopic techniques. The inhibitory activities of all the synthesized compounds against MDA-MB-231 and H1975 cancer cell lines were evaluated by an MTT assay. The most potent compound 3e was analyzed by flow cytometry. Subsequently, computational studies were performed to investigate the possible antitumor mechanisms of compound 3e. Results:: The results indicated that compound 3e exhibited potent antitumor activities with IC50 values of 11.84±0.83μM against H1975 cells and 5.66±2.39μM against MDA-MB-231 cells, which were more potent than the SHP2 inhibitor GS493 (IC50 = 19.08±1.01 μM against H1975 cells and IC50 = 25.02±1.47 μM against MDA-MB-231 cells). Further analysis by flow cytometry demonstrated that compound 3e induced cell apoptosis in H1975 cells. The results of the molecular docking and MD simulations, including RMSD, RMSF, PCA, DCCM and binding energy and decomposition analyses, revealed that compound 3e probably selectively inhibited SHP2. Conclusion:: A new compound having a 2-aminopyrazine substructure with potent inhibitory activities against the H1975 and MDA-MB-231 cancer cells was obtained, meriting further investigation as an antitumor drug.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3