In-silico Assessment of Polyherbal Oils as Anti-diabetic Therapeutics

Author:

Bahl Amul S.1,Verma Vipin Kumar2ORCID,Prajapati Vaishali2,Bhatia Jagriti2,Arya Dharamvir Singh2

Affiliation:

1. Department of Research, Development, and Innovation, God’s Own Store LLP, New Delhi, 110065, India

2. Deptartment of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India

Abstract

Background: Diabetes mellitus (DM) is characterized by elevated blood glucose levels either due to insufficient insulin production, defective insulin action, or both. It affects nearly 537 million individuals worldwide. Pharmacological treatment involves the use of oral antidiabetic agents as mono or combination therapy that effectively aids in controlling hyperglycemia. Despite providing therapeutic benefits, these medications limit their use owing to adverse side effects. Certain natural products, including essential oils, have promising anti-diabetic properties. Objective: The present study explores the effectiveness of two polyherbal oils and their compound towards the treatment of DM based on an In-silico approach to drug investigations. Methods: Compounds present in the polyherbal oil formulation were identified using GCMS/MS analysis. Selected compounds undergo molecular docking with the receptor, and proteins play an important role in DM. The potential compounds showing higher interactions than the known inhibitors or inducers were evaluated using molecular dynamic simulations RMSD values. Results: The compounds identified through GC-MS analysis possess anti-diabetic and antiinflammatory properties. With the aid of in silico prediction methods, compounds such as geraniol, cinnamaldehyde, anethole, caryophyllene, terpinyl acetate, cymene, linalool, menthol, Phenol,2-methoxy-3-(2-propenyl), and 2,6- octadienal,3,7-dimethyl were identified as strong binders of GLUT4 and insulin receptor proteins. Geraniol and Phenol,2-methoxy-3-(2-propenyl) interaction with GLUT4 were of particular importance owing to their conformational stability. Conclusion: Conclusion: Our data suggest an agonistic effect of compounds on target proteins aiding in enhanced insulin activity and could serve as a potential anti-diabetic agent.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3