Intratumoral and Peritumoral Edema Radiomics Based on Fat-Suppressed T2- Weighted Imaging for Preoperative Prediction of Triple-Negative Breast Cancer

Author:

Sun Ruihong1,Hu Yun1,Wang Xuechun2,Huang Zengfa1,Yang Yang1,Zhang Shutong1,Shi Feng2,Chen Lei2,Liu Hongyuan3,Wang Xiang1

Affiliation:

1. Department of Radiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China

2. Department of Research and Development, Shanghai United Imaging Intelligence, Shanghai, 200030, China

3. Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China | Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China | Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China

Abstract

Aim:: Our aim was to explore the feasibility of using radiomics data derived from intratumoral and peritumoral edema on fat-suppressed T2-weighted imaging (T2 FS) to distinguish triple-negative breast cancer (TNBC) from non-triple-negative breast cancer (non-TNBC). Methods:: This retrospective study enrolled 174 breast cancer patients. According to the MRI examination time, patients before 2021 were divided into training (n = 119) or internal test (n = 30) cohorts at a ratio of 8:2. Patients from 2022 were included in the external test cohort (n = 25). Four regions of interest for each lesion were defined: intratumoral regions, peritumoral edema regions, regions with a combination of intratumoral and peritumoral edema, and regions with a combination of intratumoral and 5-mm peritumoral. Four radiomic signatures were built using the least absolute shrinkage and selection operator (LASSO) method after selecting features. Furthermore, a radio mic-radiological model was constructed using a combination of intratumoral and peritumoral edema regions along with clinical-radiologic features. Area under the receiver operating characteristic curve (AUC) calculations, decision curve analysis, and calibration curve analysis were performed to assess the performance of each model. Results:: The radiomic-radiological model showed the highest AUC values of 0.906 (0.788-1.000) and 82.5 (0.622-0.947) in both the internal and external test sets, respectively. The radiology-radiomic model exhibited excellent predictive performance, as evidenced by the calibration curves and decision curve analysis. Conclusion:: The ensemble model based on T2 FS-based radiomic features of intratumoral and peritumoral edema, along with radiological factors, performed better in distinguishing TNBC from non-TNBC than a single model. We explored the possibility of developing explainable models to support the clinical decision-making process.

Funder

Disciplinary Fund of Central Hospital of Wuhan

Natural Science Foundation of Hubei Province Plan

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3