A Review on Recent Technologies and Patents on Silica Nanoparticles for Cancer Treatment and Diagnosis

Author:

Gupta Ankita1ORCID,Kushwaha Swatantra Singh2ORCID,Mishra Amit3ORCID

Affiliation:

1. Department of Pharmaceutics, Krishna Institute of Pharmacy and Sciences, Kanpur, India

2. Department of Pharmaceutics, Pranveer Singh Institute of Technology, Kanpur, India

3. Department of Pharmaceutics, Maharana Pratap College of Pharmaceutical Sciences, Kanpur, India

Abstract

Background: Cancer is a condition in which some cells in the body grow uncontrollably and can also spread in other parts of the body. Among males, oral and lung cancers account for 25 % cancer deaths, while in females, breast and oral cancers cause 25% death. Breast and cervical cancers are the underlying cause of the high mortality rate among women. Owing to limitations of conventional cancer therapy like low drug specificity, less solubility, multidrug resistance, poor access to tumor cells and low bioavailability development of environmentally sensitive and target specific nanocarriers are imperative. Objective: The objective of this study is to review advancements made in techniques to synthesize Mesoporous Silica Nanoparticles (MSN’s) as well as strategies to functionalize its silanol group for site-specific drug release in the tumor environment and to review recent patents published regarding it. To describe rationale for selection of MSN’s for cancer theranostics amidst other nanocarriers developed. Methods: In the first section of this review, the physical and chemical properties of MSNs making it an ideal delivery system for cancer therapy and diagnostics are discussed. In the next section, various techniques involved in synthesizing and loading MSNs, including the influence of basic components of MSNs and reaction conditions on its properties are reviewed. Then the wide application of MSNs and various exogenous and endogenous stimuli harnessed for site-specific delivery of cargo and recent patents on modifying environmental conditions for large scale synthesis of MSNs and its active targeting for cancer treatment and bioimaging are discussed. Results: Physico-chemical properties and synthetic protocols of MSNs justifying them to be a promising nanovector to overcome the ill effects of traditional chemotherapy. The superlative attributes of MSNs including, tunable size, morphology, high load volume, stability, ease of modifying external and internal surface leverage applications in various dimensions of therapeutics, diagnostics, and combinatorial drug delivery. MSNs surface functionalization can be harnessed for passive and active targeting by either coating the surface with polymers or attaching various ligands. Conclusion: An ideal nano-carrier must have high loading efficiency, easily detectable, and must have stimuli's sensitive, site-specific drug release. The patent study explores new dimensions on MSNs synthesis by claiming new cost-effective templates and silica source, a more safe environment for synthesis, reducing synthesis steps, duration of reaction, effective loading of low solubility drugs by magnetized nanocarriers, pathogen-specific release and development of novel photoluminescent rechargeable MSNs under mild conditions. It’s a challenging task for researchers to successfully translate their prototypes to industries and make it feasible for commercialization. We can further work on excellent targeting concepts and architecture of MSNs for the increased opportunity in cancer theranostics.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biomedical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3