Finite Element Analysis of Reinforced Concrete Beams Strengthened with Hybrid Fiber Reinforced Polymer Systems using ANSYS

Author:

Gurram Kalyani1,N. Pannirselvam1

Affiliation:

1. Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603, India

Abstract

Background: Existing reinforced concrete (RC) structures can deteriorate over time due to aging, poor construction design, natural disasters, etc. In recent years, fiber-reinforced polymer (FRP) composite materials are becoming a preferred choice for concrete construction repair due to their durability, high strength, and corrosion resistance. This study aimed to study and analyze the properties of the constituent materials to identify any weaknesses and potential improvements. Methods: The present study investigated the effectiveness of flexural strengthening of RC beams using a hybrid grouping of glass-FRP (GFRP) and carbon-FRP (CFRP) unidirectional laminates. ANSYS finite element analysis (FE) software was used to investigate the failure modes of the beams and the stress-strain parameters. The impact of adopting two different grades of reinforcing bars in RC beam modeling was also contrasted in the study. Results: Comparisons between the finite element analysis and experimental literature results were made. Based on the test findings, it could be concluded that retrofitted beams perform better than non-retrofitted beams. According to experimental results, the HY14 sheet enhanced beam had a 188.46% higher ultimate load than the unenhanced beams. Conclusion: Comparing experimental findings to the conclusions of the numerical analysis, a maximum difference of ultimate load and deflection at mid-span of 3.40% and 4.91%, respectively, were used to assess the accuracy of the results.

Publisher

Bentham Science Publishers Ltd.

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3