Text Clustering in Python

Author:

Mittal ​Mamta1,Battineni ​Gopi2,Usharani Bhimavarapu3,Goyal Lalit Mohan4

Affiliation:

1. ​​​​​​​​Delhi Skill & Entrepreneurship University, New Delhi, India

2. ​University of Camerino, Camerino, Italy

3. ​​Department of CSE, Koneru Lakshmaiah Education Foundation at Vaddeswaram, Andhra Pradesh,India

4. ​​​​​​Department of Computer Engineering, J.C. Bose University of Science & Technology, YMCA Faridabad (Hr.),India

Abstract

In this chapter, we learn about clustering and how document and text clustering can be performed. This chapter explains the real-time applications of text clustering and the differences between soft and hard clustering types. The clustering algorithms, including KNN, hierarchical and Fuzzy clustering, were used . Fuzzy clustering or soft clustering types can add better value performance-wise than the other two clustering algorithms. Besides, we also presented how to conduct text clustering in python using unsupervised machine learning techniques. To explain this in detail, the IRIS dataset is considered famous in UCI Machine learning Repository and well presented with python script.

Publisher

BENTHAM SCIENCE PUBLISHERS

Reference12 articles.

1. Weston J.; Ratle F; Collobert R; Deep Learning via Semi-Supervised Embedding. 2021

2. t-SNE – Laurens van der Maaten. https://lvdmaaten.github.io/tsne/

3. Englmeier K.; The role of text mining in mitigating the threats from fake news and misinformation in times of corona. Procedia Comput Sci 2021,181,149-156

4. US Presidential Election 2016: Fake News, Foreign Influence and Social Media https://aceproject.org/ace-en/topics/me/annex/case-studies/us-presidential-election-2016-2018fake-news2019

5. Ahmed H.; Traore I.; Saad S.; Detecting opinion spams and fake news using text classification. Secur Priv 2018,1(1),e9

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3