Characterization Techniques for Graphene-Based Materials

Author:

Singh Vickramjeet1,Gardas Ramesh L.2

Affiliation:

1. Dr B R Ambedkar National Institute of Technology,Department of Chemistry,Jalandhar,India,144011,

2. Indian Institute of Technology Madras,Department of Chemistry,Chennai,India,600,

Abstract

Graphene bearing 2D (dimensional) layer of carbon atoms bonded in sp2 hybridized state are only 1 atomic-scale thick. However, the graphene can be extended along the horizontal dimension. The alternate double bonds leading to perfect conjugation with sp2 hybridization are exhibited in the hexagonal structure (honeycomb) of graphene. Theoretically and experimentally, the thicknesses of graphene have been determined and are in the nano-meter range. The extraordinary mechanical and electrical properties exhibited by such a 2D material have inspired scientists for device fabrication methodologies that can shift the synthesis from lab scale to large scale. It is considered the strongest material on earth, almost 100 times stronger (i.e., strength) than the best steel. Since graphene is only 1 atomic-scale thick and transparent, the characterization of graphene is complex but essential. The thickness down to one atomic layer in graphene can be identified by the light interference causing color contrast. Thus, optical microscopy-based methods enable the identification of graphene or its derivatives; on the other hand, Raman spectroscopy, which is sensitive to molecular bonding and geometric structure, is commonly employed for the quality determination of graphene-based materials. In this chapter, various characterization techniques are discussed, enabling the characterization of graphene and graphene-based materials (GBMs).&nbsp;<br>

Publisher

BENTHAM SCIENCE PUBLISHERS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3