Importance of Surface-modified Nanocarriers in the Management of Cervical Cancer

Author:

Rachamalla Hari Krishnareddy1,Madamsetty Vijay Sagar2

Affiliation:

1. Mayo Clinic,Department of Biochemistry and Molecular Biology,Jacksonville,United States,32224,

2. Mayo Clinic,Department of Biochemistry and Molecular Biology,32224,United States,

Abstract

Cervical cancer (CC) is women's fourth most occurring malignancy, with a high death rate. Every CC patient is related to infection with high-risk human papillomaviruses (HPV), predominantly transmitted through sexual contact. Early diagnosis of CC helps treat surgical removal of tumours, leading to an increased patient life span. However, existing detection methods of CC, like Pap smear test, have very low sensitivity. Even though preventive vaccines for CC are doing well, they cannot protect against all HPV cancers and potential side effects. Additionally, chemotherapy for CC has had a detrimental impact because of the lack of selective tumour cell toxicity, resulting in higher adverse effects. Despite significant progress in oncology research, efficient CCs treatment is still challenging, and target-selective drug delivery formulations with a systematic release mechanism potentially avoid and reduce biotoxicity. Recent developments in nanomedicine and nanotechnology are creating more interest in developing new treatment strategies for CC treatment. Materials used in nanomedicine development are made up of synthetic or natural. These nanoparticles pointedly impacted therapeutic applications with enhanced specificity and unique personalized assets. Surface-engineered nanoparticles offer a massive possibility for compatibility with biological agents, including nucleic acids, proteins, etc. Surface fictionalization nanoparticles with targeting ligands further help in selective targeting. The present study summarizes recent advancements in surface-modified nanoparticlebased CC treatment methodologies.<br>

Publisher

BENTHAM SCIENCE PUBLISHERS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3