Mycorrhiza and its Applications in Agriculture and Forestry

Author:

Bahukhandi Diwakar1

Affiliation:

1. Former Principal Scientist (Mycology-Mushroom), Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012, India

Abstract

The symbiotic association between green plants and fungi is called mycorrhiza. The plant makes organic products by photosynthesis and supplies them to the fungus, and the fungus from the soil supplies water and mineral nutrients, such as phosphorus, etc., to the plant. These fungi establish a mild form of parasitism, a form of mutualism, where both the plant and the fungus benefit from the association. Mycorrhizal fungi are soil fungi that play an important role in plant growth, protection of plants from pathogens, and improving the quality of the soil. Abiotic components and living communities of soil and soil organisms, particularly microbes, can have direct and indirect impacts on land productivity. Direct impacts are those where specific organisms affect the crop yield immediately. Indirect impacts that affect the functions include those provided by soil organisms participating in carbon and nutrient cycles, soil structure modification, and food web interactions that generate ecosystem services that ultimately affect plant productivity. Selected organisms from different functional groups, like microsymbionts (symbiotic fungi, bacteria, etc.), decomposers, elemental transformers, soil ecosystem engineers, soil-borne pests and pathogens, and micro regulators, are used to illustrate the linkages between soil biota and ecosystem processes. There are various groups of fungi that form different types of symbiotic associations with almost all groups of plants, from bryophytes to seed plants, i.e., gymnosperms and angiosperms, on the earth. Out of the seven types of mycorrhizae (ectomycorrhizae, ectendomycorrhizae, ericoid mycorrhizae, arbuscular mycorrhizae, orchidoid mycorrhizae, arbutoid mycorrhizae, and monotropoid mycorrhizae), the endomycorrhizae (arbuscular) and ectomycorrhizae are the most abundant and widespread. The molecular basis of nutrient exchange between ectomycorrhizal and arbuscular mycorrhizal fungi and host plants proved the role of mycorrhizal fungi in disease control, the alleviation of heavy metal stress, and increasing production in sustainable agriculture, horticulture, and forest plants or trees, etc. Arbuscular mycorrhizal fungi play a major role in the restoration of native ecosystems, and mycorrhizae transform a disturbed ecosystem into productive land. Ectomycorrhizae play an important role in forestation, forest ecosystems, and horticultural systems, and they maintain monodominance in tropical rainforests. Apart from the nutrient benefits to the plants,the mycorrhizae are presently employed in the colonization of barren soil and improving the transplantability of forest plants. Mycorrhizae create resistance against insect pests, various root diseases, toxicity, and reduced susceptibility in plants. The presence of mycorrhizae also favours the growth of beneficial microbiota, converting the rhizosphere into a mycorrhizosphere and increasing tolerance to adverse conditions like drought, salinity, and stress in the plants.

Publisher

BENTHAM SCIENCE PUBLISHERS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3