A Decision Model for Reliability Analysis of Agricultural Sensor Data for Smart Irrigation 4.0

Author:

Mondal Subhash1,Podder Samrat1,Sengupta Diganta1

Affiliation:

1. Department of Computer Science and Engineering, Meghnad Saha Institute of Technology, Kolkata, India

Abstract

 Agriculture is the backbone of an Agro-based Country's Economic System as it employs the majority of the population. Internet-of-Things (IoT)-based intelligent systems help reduce losses and make efficient use of available resources. This paper aims to detect anomaly conditions that might occur in sensor nodes related to day-t- -day smart irrigational activities in an agricultural field. IoT-based irrigation systems being prone to unauthorized intrusion can cause damage to smart farms in terms of crop damage and infertility of the soil. In this paper, we propose an intelligent decision-making system that can identify Anomalous Conditions and Suspicious Activities. The model discussed in this paper uses the idea of Gaussian distribution, which calculates the expected probability of a given state of an agricultural field and classifies anomalies based on what previous probabilities of an anomaly state looked like. The approach classifies the anomalies with an accuracy of 80.79%, a precision of 0.81, and a recall of 0.54 under test conditions.

Publisher

BENTHAM SCIENCE PUBLISHERS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3