Micellar Catalyst

Author:

Dewangan Hitesh K.1,Kandpal Neha1,Nagwanshi Rekha1,Ghosh Kallol K1,Satnami Manmohan L.1

Affiliation:

1. School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India

Abstract

Self-aggregates microenvironment affords a robust platform for synthesizing conventional and novel materials in aqueous media. Consequential enhanced the rate of reaction and reduced the barrier for organic solvents. A solvent is frequently asked to perform multiple tasks at once, such as ensuring contacts between substrates with different polarities, controlling heat transmission, and promoting the interaction that results in the ultimate transformation. Nature has chosen water as a solvent to carry out all types of chemical transformations, regardless of whether the substrates are soluble or not. Of course, surfactants resolve the various problems that arise from the interaction of insoluble substrates and reagents. The use of surfactants under micellar conditions represents one of the largest methods to achieve catalysis in water. To date, micellar systems are present in many areas, e.g., medical science, nanoscience, organochemistry and industries of their vast application. We explained the role of micelles and vesicles on the reactivity of nucleophiles towards the cleavage of the organophosphorus compounds. Recent developments include application of micellar catalysis to complex single-phase and multiphase systems in which the surfactant plays multiple roles and interphase transport effects are often important. The distribution of the reagents between the aqueous phase and the micellar phase was described in terms of a simple pseudo-phase model (PPM). These quantitative treatments for the catalytic action of anionic reactants and the cationic micelles for cleaving the phosphate and thiophosphate ester improved an understanding of competitive counterion binding, the effects of reactive and inert solubilizates, functionalized surfactants, and the use of surfactant aggregates as reaction templates.

Publisher

BENTHAM SCIENCE PUBLISHERS

Reference172 articles.

1. McBain J.W.; Solutions of Soaps and Detergents as Colloidal Electrolytes. Colloid Chem 1944,5,102-120

2. McBain J.W.; Mobility of Highly-Charged Micelles. Trans Faraday Soc 1913,9,99-101

3. Hartley G.S.; Aqueous Solutions of Paraffin Chain Salts, A Study in Micelle Formation 1936

4. Moulik S.P.; Micelles: self-organized surfactant assemblies. Curr Sci 1996,71,368-376

5. Luazati V.; Biological Membranes 1968

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3