Investigation on Various Polymer Electrolytes for Development of Dye Sensitized Solar Cell

Author:

Chawla Priyanka1,Trivedi Shivangi1,Pooja Kumari1

Affiliation:

1. Department of Chemistry, CMP Degree College, University of Allahabad, Uttar Pradesh 211002, India

Abstract

Dye sensitized solar cells (DSSCs) based on TiO2 nanoparticles film have attracted extensive attention from both industry and academia. Generally, the liquid electrolyte is used in dye sensitized solar cells, but the vaporization of liquid electrolyte hinders its commercialization as its affects its stability. And also the reduction in performance of dye sensitized solar cells was observed due to electron recombination in semiconductor liquid electrolyte interfaces. The situation worsens when the photoanode is in contact with the vaporization of electrolyte solution that affects the charge distribution at the semi conductor electrolyte interface and initiates photo corrosion on the photoanode. With the finding of ionic conductivity in polymer, electrolytes complexed with salt give a breakthrough to the development of DSSC devices. Various types of electrolytes have been developed and tested in different DSSCs configurations to overcome this problem. Among all polymer electrolytes, PEO (Polyethylene oxide) based polymer electrolyte has shown excellent performance in different electrochemical application areas. In DSSCs, it is also considered a novel candidate due to its excellent ability to form complexes with ionic salts. Poly(vinyl alcohol) (PVA) is also a promising candidate acting as a host polymer due to its inherent characteristics like high mechanical strength, good tensile strength, high temperature resistance, non toxicity, good optical properties and high hydrophilicity. PVA have a large extent of poly hydroxyl group, which makes PVA highly hydrophile. It also offers other advantages like excellent chemical stability, ease of preparation, and flexibility. In the present paper, we review different types of polymer electrolytes which have been used for improving the performance and stability of DSSCs.<br>

Publisher

BENTHAM SCIENCE PUBLISHERS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3