The Link between miRNAs and PCKS9 in Atherosclerosis

Author:

Macvanin Mirjana1ORCID,Gluvic Zoran2ORCID,Klisic Aleksandra3ORCID,Manojlovic Mia45ORCID,Suri Jasjit6ORCID,Rizzo Manfredi7ORCID,Isenovic Esma8ORCID

Affiliation:

1. Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia

2. University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, Department of Endocrinology and Diabetes, School of Medicine, University of Belgrade, Belgrade, Serbia

3. Primary Health Care Center, University of Montenegro- Faculty of Medicine, Podgorica, Montenegro

4. Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia

5. Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Novi Sad, Serbia

6. Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA95661, USA

7. School of Medicine, Department of Health Promotion, Mother and Child Care and Medical Specialties (Promise), University of Palermo, Palermo, Italy

8. University of Belgrade Laboratory of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia Belgrade Serbia and Montenegro

Abstract

Abstract: Cardiovascular disease (CDV) represents the major cause of death globally. Atherosclerosis, as the primary cause of CVD, is a chronic immune-inflammatory disorder with complex multifactorial pathophysiology encompassing oxidative stress, enhanced immune-inflammatory cascade, endothelial dysfunction, and thrombosis. An initiating event in atherosclerosis is the subendothelial accumulation of low-density lipoprotein (LDL), followed by the localization of macrophages to fatty deposits on blood vessel walls, forming lipid-laden macrophages (foam cells) that secrete compounds involved in plaque formation. Given the fact that foam cells are one of the key culprits that underlie the pathophysiology of atherosclerosis, special attention has been paid to the investigation of the efficient therapeutic approach to overcome the dysregulation of metabolism of cholesterol in macrophages, decrease the foam cell formation and/or to force its degradation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine proteinase that has emerged as a significant regulator of the lipid metabolism pathway. PCSK9 activation leads to the degradation of LDL receptors (LDLRs), increasing LDL cholesterol (LDL-C) levels in the circulation. PCSK9 pathway dysregulation has been identified as one of the mechanisms involved in atherosclerosis. In addition, microRNAs (miRNAs) are investigated as important epigenetic factors in the pathophysiology of atherosclerosis and dysregulation of lipid metabolism. This review article summarizes the recent findings connecting the role of PCSK9 in atherosclerosis and the involvement of various miRNAs in regulating the expression of PCSK9-related genes. We also discuss PCSK9 pathway-targeting therapeutic interventions based on PCSK9 inhibition, miRNA levels manipulation by therapeutic agents, and the most recent advances in PSCK9 gene editing using CRISPR/Cas9 platform, meganuclease, and base editors.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3