Exploring the Potentials of Hyaluronic Acid-coated Polymeric Nanoparticles in Enhanced Cancer Treatment by Precision Drug Delivery, Tackling Drug Resistance, and Reshaping the Tumour Micro Environment

Author:

Raval Harshvardhan1,Bhattacharya Sankha1ORCID

Affiliation:

1. Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India

Abstract

Abstract: Cancer is a global health issue that requires modern treatments. Biocompatibility, variable size, and customisable targeting ligands make polymeric nanoparticles (PNPs) a flexible cancer therapy platform. Dynamic nanocarriers, Hyaluronic Acid (HA) coated PNPs, target the overexpressed CD44 receptor in cancer. Through improved permeability and retention, HA, a naturally occurring, biodegradable polymer, increases tumor accumulation and penetration. Hyaluronic acid-grafted polymeric nanoparticles (HA-PNPs) provide a number of advantages over other varieties due to their distinct characteristics. They used CD44 receptor upregulation on cancer cells for selective administration, leveraging the EPR effect for cancer site accumulation. Their natural composition improves biocompatibility while promoting conjugation with a variety of medicinal compounds and providing influence over size and surface features. HA-PNPs facilitate effective cellular uptake, safeguard their cargo, and have the possibility for regulated release, which leads to better delivery of drugs and therapeutic efficacy. While problems, such as CD44 expression variability and drug loading modification, persist, HA-PNPs offer a viable path for targeted and successful treatment of cancer due to their intrinsic benefits. HA-PNPs can be coupled with imaging agents to enable real-time tracking of the delivery of drugs and therapy response, hence enhancing individualized treatment regimens. HA-PNPs can be programmed to respond to particular environmental signals found in the tumor's microenvironment (such as pH, redox potential, and enzymes). This enables for controlled dispensing of therapeutic cargo only when it reaches the target site, reducing systemic exposure and associated negative effects. HA-PNPs have the ability to overcome common MDR processes used by cancer cells, thereby enhancing the efficiency of previously ineffective chemotherapeutic medicines. Recent advances in HA-functionalized PNP fabrication and cancer applications are covered in this article. It discusses complete treatment effectiveness and HA's targeting of tumors and receptors. The study describes production, clinical trials, and problems and prospects in turning HA-coated PNP platforms into viable therapeutic nanomedicines. HA-functionalized PNPs are versatile, targeted nanotherapeutics for various tumor types and disease stages, as shown in this comprehensive study.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3