Evidence from Machine Learning, Diagnostic Hub Genes in Sepsis and Diagnostic Models based on Xgboost Models, Novel Molecular Models for the Diagnosis of Sepsis

Author:

Yu YangZi1,Li Jing2,Li JiaRui1,Zen XianMing1,Fu Qiang3

Affiliation:

1. Department of Geriatrics, Tianjin Nankai Hospital, Tianjin, 300000, China

2. Department of Cardiology, Tianjin Nankai Hospital, Tianjin, 300000, China

3. Department of Critical Medicine, Tianjin Forth Central Hospital, Tianjin, 300000, China

Abstract

Background:: Systemic multi-organ dysfunction resulting from dysregulated immune responses in the host triggered by microbial infection or other factors is a major cause of death in sepsis, and secretory pathways play an important role in it. Methods:: GSE57065, GSE65682, GSE145227, and GSE54514 from Gene Expression Omnibus (GEO) were derived for this study. Secretory pathways single sample gene set enrichment analysis (ssGSEA) scores in sepsis and normal samples were exposed. Gene modules associated with secretory pathways were selected by weighted gene coexpression network analysis (WGCNA) for Protein-Protein Interaction Networks (PPI) assessment, and crossover genes in both were evaluated by eXtreme Gradient Boosting (XGBoost) model in feature selection to identify hub genes in sepsis. In addition, we explored the immune cells and signaling pathways regulated by hub genes. objective: we aim to build a diagnosis system for sepsis Results:: Remarkable dysregulation of secretory pathways was demonstrated in sepsis. The secretory pathways-associated gene modules were intimately involved in cytokine and immune responses in infection. Four crossover genes (CD163, FCER1G, C3AR1, ARG1) were present in WGCNA and PPI, and training in the XGBoost model revealed the best diagnostic performance of these 4 genes, meaning that these genes were the hub genes for sepsis. The 4-hub genes showed a significant negative correlation with T cell activity and a significant positive correlation with inflammatory immune cells. In addition, we found that the 4-hub genes markedly positively regulated INFLAMMATORY RESPONSE, IL6 JAK STAT3 SIGNALING. Conclusion:: Based on WGCNA, PPI, and XGBoost models, we identified hub genes that play an important regulatory role in sepsis. We also developed novel molecular models for the diagnosis of sepsis.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3