Multitargeted Docking, DFT-Based Optimisation, Pharmacokinetics, and MD Simulation Reveal 6-Oxidopamine HBr as a Multitargeted Inhibitor of Cervical Cancer Proteins

Author:

Alghamdi Yossef Saeed1,Mashraqi Mutaib M.2,Alsalmi Ohud3,Alharthi Afaf Awwadh3,Gharib Amal F.3

Affiliation:

1. Department of Biology, Turabah College, Taif University, Taif-21944, Kingdom of Saudi Arabia

2. Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran-61441, Kingdom of Saudi Arabia

3. Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif-21944, Kingdom of Saudi Arabia

Abstract

Background: Cervical cancer originates in the cervix, the lower part of the uterus, and results from the uncontrolled growth of abnormal cervical cells, forming malignant tumours. It poses a major global health challenge, calling for innovative drug design strategies to enhance treatment outcomes. Method: In this study, we have screened the FDA-approved drug library against four proteins, MCM10, MCM6, DNA polymerase epsilon subunit-2, and TBK1, which are essential for DNA replication, DNA repair, and cellular signalling pathways, which are dysregulated in cervical cancer cells, leading to uncontrolled growth. We have used the multisampling algorithms for screening using HTVS, SP, and XP docking; identified 6- oxidopamine HBr (C8H12BrNO3), which is used to create a model of Parkinson’s disease in animals, and obtained the docking score ranging from -5.057 to -8.871 Kcal/mol. The poses were filtered with MM\GBSA score ranging from -21.67 to -27.63 Kcal/mol. We performed QM-based DFT and pharmacokinetics studies and compared them with the standard values, suggesting that the compound can be used in cervical cancer proteins. Result: The P-L complex’s interaction fingerprints have resulted in the most interacting residues, 4THR, 4SER, and 4LYS, showing the compound’s interaction pattern. Conclusion: Further, the stability of 6-oxidopamine HBr in complex with each protein was evaluated with 100ns MD simulation in the SPC water model in a neutralised state to analyse the deviation, fluctuations, and intermolecular interactions that have proven the compound to have a better inhibitory effect against each protein and that it can be used for cervical cancer; however, experimental validation is suggested before human use.

Publisher

Bentham Science Publishers Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3