Metformin Effects on SHIP2, AMPKs and Gut Microbiota: Recent Updates on Pharmacology

Author:

Shivaprakash Priyanka1,Beeraka Narasimha M.2344,Madhunapantula Subba Rao V.5,Nikolenko Vladimir N.3,Basalingappa Kanthesh M.1

Affiliation:

1. Division of Molecular Biology, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India

2. Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Andhra Pradesh, India

3. Department of Human Anatomy, Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119991, Russia

4. Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States

5. Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore, Karnataka, India

Abstract

Introduction: Metformin, a biguanide on the WHO’s list of essential medicines has a long history of 50 years or more in treating hyperglycemia, and its therapeutic saga continues beyond diabetes treatment. Glucoregulatory actions are central to the physiological effects of metformin; surprisingly, the precise mechanism with which metformin regulates glucose metabolism is not thoroughly understood yet. Method: The main aim of this review is to explore the recent implications of metformin in hepatic gluconeogenesis, AMPKs, and SHIP2 and subsequently to elucidate the metformin action across intestine and gut microbiota. We have searched PubMed, google scholar, Medline, eMedicine, National Library of Medicine (NLM), clinicaltrials.gov (registry), and ReleMed for the implications of metformin with its updated role in AMPKs, SHIP2, and hepatic gluoconeogenesis, and gut microbiota. In this review, we have described the efficacy of metformin as a drug repurposing strategy in modulating the role of AMPKs and lysosomal-AMPKs, and controversies associated with metformin. Result: Research suggests that biguanide exhibits hormetic effects depending on the concentrations used (micromolar to millimolar). The primary mechanism attributed to metformin action is the inhibition of mitochondrial complex I, and subsequent reduction of cellular energy state, as observed with increased AMP or ADP ratio, thereby metformin can also activate the cellular energy sensor AMPK to inhibit hepatic gluconeogenesis. However, new mechanistic models have been proposed lately to explain the pleiotropic actions of metformin; at low doses, metformin can activate lysosomal-AMPK via the AXIN-LKB1 pathway. Conversely, in an AMPK-independent mechanism, metformin-induced elevation of AMP suppresses adenylate cyclase and glucagon-activated cAMP production to inhibit hepatic glucose output by glucagon. Metformin inhibits mitochondrial glycerophosphate dehydrogenase; mGPDH, and increases the cytosolic NADH/NAD+, affecting the availability of lactate and glycerol for gluconeogenesis. Metformin can inhibit Src homology 2 domain-containing inositol 5-phosphatase 2; SHIP2 to increase the insulin sensitivity and glucose uptake by peripheral tissues. Conclusion: In addition, new exciting mechanisms suggest the role of metformin in promoting beneficial gut microbiome and gut health; metformin regulates duodenal AMPK activation, incretin hormone secretion, and bile acid homeostasis to improve intestinal glucose absorption and utilization.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3