Measurement of hemodynamic parameters and antidepressant activity in hypertensive rats following two weeks consumption of Acacia tortilis leaves extract

Author:

Serafi Abdulhalim1ORCID,Azmat Aisha1ORCID,Ahmed Muhammad1,Bafail Mohammed1ORCID,Hussain Zahir1ORCID

Affiliation:

1. Department of Physiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia

Abstract

Background: Depression is common in hypertensive patients, and monotherapy may contribute for controlling depression in hypertensive patients and improving the socioeconomic outcomes. Previous studies have shown that Acacia tortilis possesses hypotensive activity. Objectives: Hence, the present study was planned to evaluate the hemodynamic activity and antidepressant effects of an ethanolic extract of Acacia tortilis leaves (ATEL) in salt-induced hypertensive rats. Methods: Sprague-Dawley rats were divided into 5 groups for experiments. The rats received respective treatment for 15 days: G1: Control (C); G2: Hypertensive control (HC: high dietary salt, 4% 10ml/kg); G3-5: HC+ ATEL (50, 100, 150mg/kg respectively). Cardiac hemodynamics (mean arterial blood pressure: MAP and heart rate: HR) were measured in the anaesthetized rats by an invasive method. For this method, one carotid artery was catheterized, a pressure catheter (pressure volume Millar microtip catheter connected to the Mikro-Tip Pressure-Volume System from Ultra Foundation Systems, PowerLab) was inserted, and the blood pressure (MAP in mm Hg) and HR (beats/min) were monitored continuously during the experiment. For the neuropharmacological studies, antidepressant activity was assessed by forced swim test on the 15th day. Results: A dose-dependent significant increase in mobility time was observed in rats (G3-5) treated with HC + different doses of ATEL (p < 0.05). However, the mobility time was significantly reduced by HC (G2) treatment compared with that of the control (p< 0.05). The hypertensive control (high dietary salt: HC) group showed significant increases in SP, DP, MAP, and HR (p<0.05) compared to the control (G1) group. At all doses (50, 100 and 150 mg/kg), MAP and HR were found to decrease significantly (p<0.05) when compared with the values in the HC (G2) group. Further analysis revealed an improvement in heart rate variability (HRV) in ATEL-treated hypertensive rats. Conclusion: The present research suggests that increased dietary salt intake not only increases blood pressure significantly but also increases depression. ATEL contains some efficacious constituents, N, N-dimethyltryptamine (DMT: a 5-HT1A agonist) with predominant antidepressant and antihypertensive activity. Hence, ATEL appears to be a valuable plant extract that can be useful, at least as an adjunct, for therapy in patients who suffer from both depression and hypertension. Objectives: Hence, the present study was planned to evaluate the hemodynamic activity and antidepressant effects of an ethanolic extract of Acacia tortilis leaves (ATEL) in salt-induced hypertensive rats. Methods: Sprague-Dawley rats were divided into 5 groups for experiments. The rats received respective treatment for 15 days: G1: Control (C); G2: Hypertensive control (HC: high dietary salt, 4% 10ml/kg); G3-5: HC+ ATEL (50, 100, 150mg/kg respectively). Cardiac hemodynamics (mean arterial blood pressure: MAP and heart rate: HR) were measured in the anaesthetized rats by an invasive method. For this method, one carotid artery was catheterized, a pressure catheter (pressure volume Millar microtip catheter connected to the Mikro-Tip Pressure-Volume System from Ultra Foundation Systems, PowerLab) was inserted, and the blood pressure (MAP in mm Hg) and HR (beats/min) were monitored continuously during the experiment. For the neuropharmacological studies, antidepressant activity was assessed by forced swim test on the 15th day. Results: A dose-dependent significant increase in mobility time was observed in rats (G3-5) treated with HC + different doses of ATEL (p < 0.05). However, the mobility time was significantly reduced by HC (G2) treatment compared with that of the control (p< 0.05). The hypertensive control (high dietary salt: HC) group showed significant increases in SP, DP, MAP, and HR (p<0.05) compared to the control (G1) group. At all doses (50, 100 and 150 mg/kg), MAP and HR were found to decrease significantly (p<0.05) when compared with the values in the HC (G2) group. Further analysis revealed an improvement in heart rate variability (HRV) in ATEL-treated hypertensive rats. Conclusion: The present research suggests that increased dietary salt intake not only increases blood pressure significantly but also increases depression. ATEL contains some efficacious constituents, N, N-dimethyltryptamine (DMT: a 5-HT1A agonist) with predominant antidepressant and antihypertensive activity. Hence, ATEL appears to be a valuable plant extract that can be useful, at least as an adjunct, for therapy in patients who suffer from both depression and hypertension.

Publisher

Bentham Science Publishers Ltd.

Subject

Complementary and alternative medicine,Drug Discovery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3