Identification of Potential Pleiotropic Genes for Immune and Skeletal Diseases Using Multivariate MetaCCA Analysis

Author:

He Pei1ORCID,Cao Rong- Rong1,Deng Fei- Yan1ORCID,Lei Shu- Feng2ORCID

Affiliation:

1. Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P. R, China

2. Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P. R. , China

Abstract

Background: Immune and skeletal systems physiologically and pathologically interact with each other. The immune and skeletal diseases may share potential pleiotropic genetics factors, but the shared specific genes are largely unknown Objective: This study aimed to investigate the overlapping genetic factors between multiple diseases (including rheumatoid arthritis (RA), psoriasis, osteoporosis, osteoarthritis, sarcopenia and fracture) Methods: The canonical correlation analysis (metaCCA) approach was used to identify the shared genes for six diseases by integrating genome-wide association study (GWAS)-derived summary statistics. Versatile Gene-based Association Study (VEGAS2) method was further applied to refine and validate the putative pleiotropic genes identified by metaCCA. Results: About 157 (p< 8.19E-6), 319 (p<3.90E-6) and 77 (p<9.72E-6) potential pleiotropic genes were identified shared by two immune disease, four skeletal diseases, and all of the six diseases, respectively. The top three significant putative pleiotropic genes shared by both immune and skeletal diseases, including HLA-B, TSBP1 and TSBP1-AS1 (p<E-300) were located in the major histocompatibility complex (MHC) region. Nineteen of 77 putative pleiotropic genes identified by metaCCA analysis were associated with at least one disease in the VEGAS2 analysis. Specifically, majority (18) of these 19 putative validated pleiotropic genes were associated with RA. Conclusion: The metaCCA method identified some pleiotropic genes shared by the immune and skeletal diseases. These findings help to improve our understanding of the shared genetic mechanisms and signaling pathways underlying immune and skeletal diseases.

Funder

Natural Science Foundation of China

Science and Technology Project of Suzhou

Publisher

Bentham Science Publishers Ltd.

Subject

Genetics (clinical),Genetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3