HCST Expression Distinguishes Immune-hot and Immune-cold Subtypes in Pancreatic Ductal Adenocarcinoma

Author:

Ma Boyi1,Zhang Dai-jun2,Hu Yabin3,Chen Xianghan1,Gong Ruining1,Lei Ke14,Yu Qian14,Ren He14

Affiliation:

1. Tumor Immunology and Cytotherapy of Medical Research Center and Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China

2. Qingdao Medical College, Qingdao University, Qingdao 266000, China

3. Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China

4. Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), The Affiliated Hospital of Qingdao University, Qingdao 266000, China

Abstract

Introduction: Pancreatic ductal adenocarcinoma (PDAC) is the most prevalent malignancy of the pancreas, and the incidence of this disease is approximately equivalent to the mortality rate. Immunotherapy has made a remarkable breakthrough in numerous cancers, while its efficacy in PDAC remains limited due to the immunosuppressive microenvironment. Immunotherapy efficacy is highly correlated with the abundance of immune cells, particularly cytotoxic T cells. Therefore, molecular classifier is needed to identify relatively hot tumors that may benefit from immunotherapy. Method: In this study, we carried out a transcriptome analysis of 145 pancreatic tumors to define the underlying immune regulatory mechanism driving the PDAC immunosuppressive microenvironment. The immune subtype was identified by consensus clustering, and the underlying PDAC immune activation mechanism was thoroughly examined using single sample gene set enrichment analysis (ssGSEA). Area under the curve (AUC) of the receiver operating characteristic (ROC) curve was used to assess the accuracy of the molecular classifier in differentiating immunological subgroups of PDAC.5 Result: The protein level of molecular classifier was verified by immunohistochemistry in human PDAC tissue. Immune-hot tumors displayed higher levels of immune cell infiltration and immune checkpoint, in line with enriched immune escape pathways. Hematopoietic cell signal transducer (HCST), a molecular classifier used to differentiate immunological subtypes of PDAC, has shown a substantial link with the expression levels of cytotoxic markers, such as CD8A and CD8B. At the single cell level, we found that HCST was predominantly expressed in CD8T cells. By immunohistochemistry and survival analysis, we further demonstrated the prognostic value of HCST in PDAC. Conclusion: We identified HCST as a molecular classifier to distinguish PDAC immune subtypes, which may be useful for early diagnosis and targeted therapy of PDAC.

Publisher

Bentham Science Publishers Ltd.

Subject

Genetics (clinical),Drug Discovery,Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3