Computational Analysis Illustrates the Mechanism of Qingfei Paidu Decoction in Blocking the Transition of COVID-19 Patients from Mild to Severe Stage

Author:

Li Xinhai1,Xiang Liu1,Lin Yue1,Tang Qiang1,Meng Fanbo1,Chen Wei1

Affiliation:

1. Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

Abstract

Background: The epidemic of SARS-CoV-2 has made COVID-19 a serious threat to human health around the world. The severe infections of SARS-CoV-2 are usually accompanied by higher mortality. Although the Qingfei Paidu Decoction (QFPDD) has been proved to be effective in blocking the transition of COVID-19 patients from mild to severe stage, its mechanism remains unclear. Objective: This study aims to explore the mechanism of QFPDD in blocking the transition of COVID-19 patients from mild to severe stage. Materials and Methods: In the process of screening active ingredients, oral bioavailability (OB) and drug likeness (DL) are key indicators, which can help to screen out pivotal compounds. Therefore, with the criteria of OB≥30% and DL≥0.18 , we searched active ingredients of QFPDD in the Traditional Chinese Medicine Systems Pharmacology (TCMSP, https://tcmspw.com/) by using its 21 herbs as keywords. Results: We filtered out 6 pivotal ingredients from QFPDD by using the bioinformatics method, namely quercetin, luteolin, berberine, hederagenin, shionone and kaempferol, which can inhibit the highly expressed genes (i.e. CXCR4, ICAM1, CXCL8, CXCL10, IL6, IL2, CCL2, IL1B, IL4, IFNG) in severe COVID-19 patients. By performing KEGG enrichment analysis, we found seven pathways, namely TNF signaling pathway, IL-17 signaling pathway, Toll-like receptor signaling pathway, NF-kappa B signaling pathway, HIF-1 signaling pathway, JAK-STAT signaling pathway, and Th17 cell differentiation, by which QFPDD could block the transition of COVID-19 patients from mild to severe stage. Conclusion: QFPDD can prevent the deterioration of COVID-19 in the following mechanisms, i.e. inhibiting SARS-CoV-2 invasion and replication, anti-inflammatory and immune regulation, and repairing body damage. These results will be helpful for the prevention and treatment of COVID-19.

Publisher

Bentham Science Publishers Ltd.

Subject

Genetics (clinical),Drug Discovery,Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3