Hutchinson-Gilford Progeria Syndrome: An Overview of the Molecular Mechanism, Pathophysiology and Therapeutic Approach

Author:

Rahman Md. Mominur1,Ferdous Kazi Sayma1,Ahmed Muniruddin1,Islam Mohammad Touhidul1,Khan Md. Robin1,Perveen Asma2,Ashraf Ghulam Md.3,Uddin Md. Sahab4ORCID

Affiliation:

1. Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh

2. Glocal School of Life Sciences, Glocal University, Saharanpur, India

3. Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia

4. Department of Pharmacy, Southeast University, Dhaka, Bangladesh

Abstract

Lamin A/C encoded by the LMNA gene is an essential component for maintaining the nuclear structure. Mutation in the lamin A/C leads to a group of inherited disorders is known as laminopathies. In the human body, there are several mutations in the LMNA gene that have been identified. It can affect diverse organs or tissues or can be systemic, causing different diseases. In this review, we mainly focused on one of the most severe laminopathies, Hutchinson-Gilford progeria syndrome (HGPS). HGPS is an immensely uncommon, deadly, metameric ill-timed laminopathies caused by the abnormal splicing of the LMNA gene and production of an aberrant protein known as progerin. Here, we also presented the currently available data on the molecular mechanism, pathophysiology, available treatment, and future approaches to this deadly disease. Due to the production of progerin, an abnormal protein leads to an abnormality in nuclear structure, defects in DNA repair, shortening of telomere, and impairment in gene regulation which ultimately results in aging in the early stage of life. Now some treatment options are available for this disease, but a proper understanding of the molecular mechanism of this disease will help to develop a more appropriate treatment which makes it an emerging area of research.

Publisher

Bentham Science Publishers Ltd.

Subject

Genetics (clinical),Drug Discovery,Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3