Integrated Analysis of mRNA-seq and miRNA-seq to Identify c-MYC, YAP1 and miR-3960 as Major Players in the Anticancer Effects of Caffeic Acid Phenethyl Ester in Human Small Cell Lung Cancer Cell Line

Author:

Mo Fei1ORCID,Luo Ya2,Fan Dian1,Zeng Hao1ORCID,Zhao Yunuo1,Luo Meng1ORCID,Liu Xiaobei1,Ma Xuelei2ORCID

Affiliation:

1. Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China

2. Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China

Abstract

Background: Caffeic Acid Phenethyl Ester (CAPE), an active extract of propolis, has recently been reported to have broad applications in various cancers. However, the effects of CAPE on Small Cell Lung Cancer (SCLC) are largely unknown. Therefore, the aim of this study was to determine the anti-proliferative effect of CAPE and explore the underlying molecular mechanisms in SCLC cells using high-throughput sequencing and bioinformatics analysis. Methods: Small-cell lung cancer H446 cells were treated with CAPE, and cell proliferation and apoptosis were then assessed. Additionally, the regulation mediated by miR-3960 after CAPE treatment was explored and the altered signaling pathways were predicted in a bioinformatics analysis. Results: CAPE significantly inhibited cell proliferation and induced apoptosis. CAPE decreased the expression of Yes-Associated Protein 1 (YAP1) and cellular myelocytomatosis oncogene (c-MYC) protein. Moreover, the upregulation of miR-3960 by CAPE contributed to CAPE-induced apoptosis. The knockdown of miR-3960 decreased the CAPE-induced apoptosis. Conclusion: We demonstrated the anti-cancer effect of CAPE in human SCLC cells and studied the mechanism by acquiring a comprehensive transcriptome profile of CAPE-treated cells.

Funder

Sichuan provincial science and technology department

Publisher

Bentham Science Publishers Ltd.

Subject

Genetics(clinical),Drug Discovery,Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3