The Computational Analysis Conducted on miRNA Target Sites in Association with SNPs at 3’UTR of ADHD-implicated Genes

Author:

Abdi Adel1,Zafarpiran Mina1,Farsani Zeinab S.2ORCID

Affiliation:

1. Department of Genetics, Animal Biology Group, Faculty of Natural Science, Tabriz University, Tabriz, Iran

2. Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, Iran

Abstract

Background: Attention-deficit/hyperactivity disorder (ADHD) is a frequent chronic neuropsychiatric disorder in which different factors including environmental, genetic, and epigenetic factors play an important role in its pathogenesis. One of the effective epigenetic factors is recognized as MicroRNAs (miRNAs). On the other hand, it has been indicated that the single nucleotide polymorphism (SNPs) present within 3'UTR (3' untranslated region) of mRNAs can influence the regulation of miRNA-mediated gene and susceptibility to a diversity of human diseases. Methods: The purpose of this study was to analyze the SNPs within the 3'UTR of miRNA target genes associated with ADHD. 3'UTR genetic variants were identified in all genes associated with ADHD using DisGeNET, dbGaP, Ovid, DAVID, Web of knowledge, and SNPs databases. miRNA's target prediction databases were applied in order to predict the miRNA binding sites. 124 SNPs with MAF>0.05 were identified located in the binding site of the miRNA of 35 genes amongst 51 genes associated with ADHD. Results: Bioinformatics analysis predicted 81 MRE (miRNA recognition elements)-creating SNPs, 101 MRE-breaking SNPs, 61 MRE-enhancing SNPs, and finally predicted 41 MREdecreasing SNPs in the 3'UTR of ADHD-implicated genes. These candidate SNPs within these genes miRNA binding sites can alter the miRNAs binding, and consequently, lead to mRNA gene regulation. Conclusion: Therefore, these miRNA and MRE-SNPs may play important roles in ADHD, and because of that, they would be valuable for further investigation in the field of functional verification.

Publisher

Bentham Science Publishers Ltd.

Subject

Molecular Medicine,Neuropsychology and Physiological Psychology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3