Phosphate Isosteres in Medicinal Chemistry

Author:

Rye C. S.,Baell J. B.1

Affiliation:

1. Walter and Eliza Hall Institute of Medical Research Biotechnology Centre, Division of StructuralBiology, Medicinal Chemistry Group, 4 Research Avenue, Bundoora, VIC, 3086, Australia., Australia

Abstract

The phosphate group is at the heart of an enormous number of biological processes. The simple phosphorylation or dephosphorylation of a protein can have a wide range of consequences, including effects on its biological activity, its interaction with other proteins, and on its subcellular location. Abnormal levels of protein phosphorylation have been linked to a wide range of diseases including cancer and diabetes. Consequently, proteins that recognise the phosphate moiety have become an attractive target for therapeutic development. The most prevalent medicinal chemistry research examines the interactions of phosphorylated tyrosine residues; however, the role of phosphate groups on serine or threonine residues, in nucleotides, DNA and RNA, on sugars, and lipid mediators such as lysophosphatidic acid should not be overlooked. Investigations have focused on the non-catalytic phosphotyrosine-recognising domains such as Src homology 2 (SH2) and phosphotyrosine binding (PTB) domains, as well as catalytic proteins such as protein tyrosine phosphatase 1B (PTP1B). The utilisation of the phosphate moiety as part of an inhibitor is severely limited by the enzymatic lability and poor cellular bioavailability of this highly charged recognition element. The development of phosphate isosteres attempts to address these issues by introducing a non-scissile bond and utilizing groups with less charge that are still able to interact favourably with the target protein in much the same way as the phosphate group does. Many phosphate mimics retain the phosphorus atom such as in the highly successful fluoromethylenephosphonates, whereas others have lost the tetrahedral phosphate geometry and are based on the combination of one or more carboxylate groups that generally reduce the overall charge of the molecule. This review focuses on the recent developments and the use of phosphate isosteres in medicinal chemistry, covering roughly the past four years.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3