RNA Interference as A Gene-Specific Approach for Molecular Medicine

Author:

Grunweller A.,Hartmann R. K.1

Affiliation:

1. Institut fur Pharmazeutische Chemie, Philipps-Universitat Marburg, Marbacher Weg6, 35037 Marburg, Germany., Germany

Abstract

The discovery of RNA interference (RNAi) in eukaryotic cells has been the major recent breakthrough in molecular and cell biology. RNAi machineries exert biological functions in gene regulation, genome defense and chromatin architecture and dynamics. The potential of RNAi to silence any gene of interest in a highly specific and efficient manner via double-stranded RNA (dsRNA) has literally revolutionized modern genetics. RNAi-based functional genomics now permits, for the first time, to evaluate the cellular role of individual gene products on a genome-wide scale in higher organisms like mammals, presenting an alternative to the generation of animal knockouts often doomed to failure because of a lethal phenotype. RNAi has had an enormous impact on the development of novel disease models in animals, and it is likely that small interfering RNAs (siRNAs), which are the trigger molecules for RNA silencing, will become an invaluable tool for the treatment of genetic diseases. First clinical trials, using siRNAs directed against the vascular endothelial growth factor (VEGF) or one of its receptors, have been initiated recently for the treatment of age-related macular degeneration. Improving guidelines for the rational design of siRNAs, based on recent progress in understanding the mechanisms underlying RNAi, as well as the introduction of chemical modifications into siRNAs are expected to improve their pharmacokinetic and pharmacodynamic properties for in vivo applications. Finally, successful therapeutic application of RNAi will depend on the development of improved siRNA delivery strategies that combine high specificity and efficiency with a low immunostimulatory and tumorigenic potential.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3