Evaluation of Fetal Head Circumference (HC) and Biparietal Diameter (BPD (Biparietal Diameter)) in Ultrasound Images Using Multi-Task Deep Convolutional Neural Network

Author:

Mohideen Kother1ORCID,Joharah Fathimuthu23

Affiliation:

1. Department of IT, Sri Ram Nallamani Yadava College of Arts & Science, Tenkasi, Tamilnadu-627804, India

2. Department of Information Technology, Sri Ram Nallamani Yadava College of Arts & Science, Tenkasi, Tamilnadu- 627804, India

3. Affiliation of Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627012, Tamilnadu, India

Abstract

Introduction: Ultrasound imaging is a standard examination during pregnancy that can measure specific biometric parameters towards prenatal diagnosis and estimating gestational age. Fetal head circumference (HC) is a significant factor in determining fetus growth and health. Methods: This paper proposes a multi-task deep convolutional neural network for automatic segmentation and estimation of HC (Fetal head circumference) ellipse by minimizing a compound cost function composed of segmentation dice score and MSE of ellipse parameters. Ultrasound-based fetal biometric measurements, such as head circumference (HC) and biparietal diameter (BPD (BIPARIETAL DIAMETER)), are commonly used to evaluate the gestational age and diagnose fetal central nervous system (CNS) pathology. Since manual measurements are operator-dependent and time-consuming, there have been numerous researches on automated methods. However, existing computerized methods still are not satisfactory in terms of accuracy and reliability, owing to difficulties in dealing with various artefacts in ultrasound images. Results: This paper focuses on fetal head biometry and develops a deep-learning-based method for estimating HC (Fetal head circumference) and BPD (BIPARIETAL DIAMETER) with a high degree of accuracy and reliability. Conclusion: The proposed method effectively identifies the head boundary by differentiating tissue image patterns concerning the ultrasound propagation direction. The proposed method was trained with 102 labelled data set and tested to 70 ultrasound images. We achieved a success rate of 92.31% for HC (Fetal head circumference) and BPD (BIPARIETAL DIAMETER) estimations and an accuracy of 87.14% for the plane acceptance check.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology (medical),Endocrinology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analytical study of the encoder-decoder models for ultrasound image segmentation;Service Oriented Computing and Applications;2023-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3