Genetic-TLBO Algorithm for Power System Stabilizer

Author:

Roshandel Emad1,Moattari Mojtaba2

Affiliation:

1. Department of Research and Development, Eram Sanat Mooj Gostar Company, Shiraz, Iran

2. Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

Background: A large number of nature-based optimization methods have been proposed to use as efficient tools in scientific studies. Genetic Algorithm (GA), which operates based on human genetical evolution, has been an outstanding mostly used solver in a wide range of applications. This algorithm reflects the process of natural selection where the fittest individuals are selected for reproduction in order to produce offspring of the next generation. Initialization, selection, crossover, and mutation are the main parts of the GA population-based method which enables GA to have a prominent explorative feature. On the other hand, the Teaching Learning Based Optimization algorithm (TLBO) is of great performance during searching for the optimum solution among individuals. Therefore, it is expected that the combination of both algorithms in a certain logical way improves the optimization time. Objective: The study intends to determine ways of improving performance of the TLBO algorithm to solve a complex non-linear problem. Power system studies are one of the most complex problems for analysis. Therefore, a powerful heuristic optimization procedure would have a valuable contribution in solving such problems. In addition, the proposed heuristic algorithm will help scientists to apply the technique to their problems. Materials and Methods: According to the aforementioned explanation, a new efficient optimization approach is proposed which optimizes the parameters of multi-machine power system stabilizers (PSSs). The TLBO algorithm includes two different stages in its main structure, which are aptly called teacher and student stages. The student stage of TLBO is replaced by the genetic algorithm in order to improve the explorative feature of the main TLBO. The PSS parameters are obtained for four PSSs which are connected to four generators. Results: The performance of the proposed stabilizer is compared with other formerly designed stabilizers reported in the literature consisting of multi-band PSSs for two areas four-machine power system. Simulation results demonstrate the effectiveness and robustness of the proposed PSS in damping local and inter-area oscillation modes under various disturbances and confirm its superiority in comparison with the other types of PSSs. Conclusion: : A search heuristic method like the genetic algorithm can dramatically improve the performance of meta-heuristic optimization technique. In actuality, the TLBO as a meta-heuristic optimization technique suffers from a direct search of random solutions in its primary stage. Then, the TLBO relinquishes some parts of search space which may restrict the algorithm to find absolute maximums or minimums. In this condition, the GA with a great ability in searching the whole search space effectively improves the TLBO. According to the obtained results, the proposed algorithm, named Genetic-TLBO, obviates the conventional TLBO flaws successfully.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology (medical),Endocrinology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. International Trade E-commerce System Based on Genetic Algorithm;2023 International Conference on Networking, Informatics and Computing (ICNETIC);2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3