iProm-Yeast: Prediction Tool for Yeast Promoters Based on ML Stacking

Author:

Shujaat Muhammad1,Tayara Hilal2,Yoo Sunggoo3,Chong Kil To4

Affiliation:

1. Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Korea

2. School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Korea

3. Department of Electricity Engineering, College of Jeonju Vision, Jeonju 55059, Korea

4. Advances Electronics and Information Research Center, Jeonbuk National University, Jeonju 54896, Korea

Abstract

Background and Objective:: Gene promoters play a crucial role in regulating gene transcription by serving as DNA regulatory elements near transcription start sites. Despite numerous approaches, including alignment signal and content-based methods for promoter prediction, accurately identifying promoters remains challenging due to the lack of explicit features in their sequences. Consequently, many machine learning and deep learning models for promoter identification have been presented, but the performance of these tools is not precise. Most recent investigations have concentrated on identifying sigma or plant promoters. While the accurate identification of Saccharomyces cerevisiae promoters remains an underexplored area. In this study, we introduced “iPromyeast”, a method for identifying yeast promoters. Using genome sequences from the eukaryotic yeast Saccharomyces cerevisiae, we investigate vector encoding and promoter classification. Additionally, we developed a more difficult negative set by employing promoter sequences rather than nonpromoter regions of the genome. The newly developed negative reconstruction approach improves classification and minimizes the amount of false positive predictions. Methods:: To overcome the problems associated with promoter prediction, we investigate alternate vector encoding and feature extraction methodologies. Following that, these strategies are coupled with several machine learning algorithms and a 1-D convolutional neural network model. Our results show that the pseudo-dinucleotide composition is preferable for feature encoding and that the machine- learning stacking approach is excellent for accurate promoter categorization. Furthermore, we provide a negative reconstruction method that uses promoter sequences rather than non-promoter regions, resulting in higher classification performance and fewer false positive predictions. Results:: Based on the results of 5-fold cross-validation, the proposed predictor, iProm-Yeast, has a good potential for detecting Saccharomyces cerevisiae promoters. The accuracy (Acc) was 86.27%, the sensitivity (Sn) was 82.29%, the specificity (Sp) was 89.47%, the Matthews correlation coefficient (MCC) was 0.72, and the area under the receiver operating characteristic curve (AUROC) was 0.98. We also performed a cross-species analysis to determine the generalizability of iProm-Yeast across other species. Conclusion:: iProm-Yeast is a robust method for accurately identifying Saccharomyces cerevisiae promoters. With advanced vector encoding techniques and a negative reconstruction approach, it achieves improved classification accuracy and reduces false positive predictions. In addition, it offers researchers a reliable and precise webserver to study gene regulation in diverse organisms.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3