Prediction of miRNA-disease Associations by Deep Matrix Decomposition Method based on Fused Similarity Information

Author:

Chen Xia12,Qu Qiang3,Zhang Xiang2,Nie Hao2,Chao Xiuxiu2,Ou Weihao2,Chen Haowen2,Fu Xiangzheng4

Affiliation:

1. College of Avionics Maintenance, Changsha Aeronautical Vocational and Technical College, Changsha, China

2. College of Computer Science and Electronic Engineering, Hunan University, Changsha, China

3. College of Electrical and Information Engineering, Hunan University, Changsha, China

4. Research Institute of Hunan University in Chongqing, Chongqing, China

Abstract

Aim: MicroRNAs (miRNAs), pivotal regulators in various biological processes, are closely linked to human diseases. This study aims to propose a computational model, SIDMF, for predicting miRNA-disease associations. Background: Computational methods have proven efficient in predicting miRNA-disease associations, leveraging functional similarity and network-based inference. Machine learning techniques, including support vector machines, semi-supervised algorithms, and deep learning models, have gained prominence in this domain. Objective: Develop a computational model that integrates disease semantic similarity and miRNA functional similarity within a deep matrix factorization framework to predict potential associations between miRNAs and diseases accurately. Methods: SIDMF, introduced in this study, integrates disease semantic similarity and miRNA functional similarity within a deep matrix factorization framework. Through the reconstruction of the miRNA-disease association matrix, SIDMF predicts potential associations between miRNAs and diseases. Results: The performance of SIDMF was evaluated using global Leave-One-Out Cross-Validation (LOOCV) and local LOOCV, achieving high Area Under the Curve (AUC) values of 0.9536 and 0.9404, respectively. Comparative analysis against other methods demonstrated the superior performance of SIDMF. Case studies on breast cancer, esophageal cancer, and prostate cancer further validated SIDMF's predictive accuracy, with a substantial percentage of the top 50 predicted miRNAs confirmed in relevant databases. Conclusion: SIDMF emerges as a promising computational model for predicting potential associations between miRNAs and diseases. Its robust performance in global and local evaluations, along with successful case studies, underscores its potential contributions to disease prevention, diagnosis, and treatment.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3