A Deep Neural Network Model with Attribute Network Representation for lncRNA-Protein Interaction Prediction

Author:

Wei Meng-Meng1ORCID,Yu Chang-Qing1,Li Li-Ping2,You Zhu-Hong3,Wang Lei4

Affiliation:

1. Xijing University School of Information Engineering Xi\'an China

2. Longdong University College of Agriculture and Forestry Qingyang China

3. Northwestern Polytechnical University School of Computer Science Xi\'an China

4. Guangxi Academy of Sciences Guangxi Key Lab of Human-Machine Interaction and Intelligent Decision Nanning China

Abstract

background: LncRNA is not only involved in the regulation of the biological functions of protein-coding genes but its dysfunction is also associated with the occurrence and progression of various diseases. As more and more studies have shown that an in-depth understanding of the mechanism of action of lncRNA is of great significance for disease treatment. However, traditional wet testing is time-consuming, laborious, expensive, and has many subjective factors, which may affect the accuracy of the experiment. objective: Most of the methods for predicting lncRNA-protein interaction (LPI) only rely on a single feature or there is noise in the feature. To solve this problem, we propose a computational model CSALPI based on a deep neural network. method: Firstly, this model utilizes cosine similarity to extract similarity features for lncRNA-lncRNA and protein-protein. Denoising similar features using the Sparse Autoencoder. Second, a neighbor enhancement autoencoder is employed to enforce neighboring nodes to be represented in a similar way by reconstructing the denoised features. Finally, a Light Gradient Boosting Machine classifier is used to predict potential LPIs. result: To demonstrate the reliability of CSALPI, multiple evaluation metrics were used under a 5-fold cross-validation experiment and excellent results were achieved. In the case study, the model successfully predicted 7 out of 10 disease-associated lncRNA and protein pairs. conclusion: The CSALPI can be used as an effective complementary method for predicting potential LPIs from biological experiments.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3