A Novel Method for Mining Regulatory sRNAs Related to Rice Resistance Against Blast Fungus from Multi-Omics Data

Author:

Sheng Jianhua1,Zhao Enshuang1,Zhu Yuheng1,Dai Yinfei1,Zhang Borui2,Qin Qingming3,Zhang Hao1

Affiliation:

1. College of Computer Science and Technology, Jilin University, Changchun 130012, Jilin China

2. Department of Electrical Engineering and Computer Science Missouri-Columbia University Columbia, MO, USA

3. Department of Molecular Microbiology and Immunology School of Medicine Missouri University, Columbia, Missouri, USA

Abstract

Background: Due to infection by the rice blast fungus, rice, a major global staple, faces yield challenges. While chemical control methods are common, their environmental and economic costs are growing concerns. Traditional biological experiments are also inefficient for exploring resistance genes. Therefore, understanding the interaction between rice and the rice blast fungus is urgent and important. Objective: This study aims to use multi-omics data to uncover key elements in rice's defense against rice blast fungus Magnaporthe oryzae. We built a detailed, multi-layered heterogeneous interaction network, employing an innovative graph embedding feature with a cross-layer random walk algorithm to identify crucial crucial resistance factors.This could inform strategies for enhancing disease resistance in rice. objective: This study aims to use multi-omics data to uncover key elements in rice's defense against rice blast fungus Magnaporthe oryzae. We built a detailed, multi-layered heterogeneous interaction network, employing an innovative graph embedding feature with a cross-layer random walk algorithm, to identify crucial crucial resistance factors. This could inform strategies for enhancing disease resistance in rice. Methods: We integrated genomics, transcriptomics, and proteomics data on Magnaporthe oryzae infecting rice. This multi-omics data was used to construct a multi-layer heterogeneous network.An advanced graph embedding algorithm (BINE) provided rich vector representations of network nodes. A multi-layer network walking algorithm was then used to analyze the network and identify key regulatory small RNA (sRNAs) in rice. Results: Node similarity rankings allowed us to identify significant regulatory sRNAs in rice that are integral to disease resistance. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses further revealed their roles in biological processes and key metabolic pathways.Our integrative method precisely and efficiently identified these crucial elements, offering a valuable systems biology tool. Conclusion: By integrating multi-omics data with computational analysis, this study reveals key regulatory sRNAs in rice's disease resistance mechanism. These findings enhance our understanding of rice disease resistance and provide genetic resources for breeding disease-resistant rice. Despite limitations in sRNA functional interpretation, this research demonstrates the power of applying multi- omics data to address complex biological problems.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3