iPSI(2L)-EDL: a Two-layer Predictor for Identifying Promoters and their Types based on Ensemble Deep Learning

Author:

Xiao Xuan1ORCID,Hu Zaihao1,Luo ZhenTao1,Xu Zhaochun1

Affiliation:

1. Department of Computer, Jing-De-Zhen Ceramic university, 333403, Jing-De-Zhen, China

Abstract

Abstract: Promoters are DNA fragments located near the transcription initiation site, they can be divided into strong promoter type and weak promoter type according to transcriptional activation and expression level. Identifying promoters and their strengths in DNA sequences is essential for understanding gene expression regulation. Therefore, it is crucial to further improve predictive quality of predictors for real-world application requirements. Here, we constructed the latest training dataset based on the RegalonDB website, where all the promoters in this dataset have been experimentally validated, and their sequence similarity is less than 85%. We used one-hot and nucleotide chemical property and density (NCPD) to represent DNA sequence samples. Additionally, we proposed an ensemble deep learning framework containing a multi-head attention module, long short-term memory present, and a convolutional neural network module. The results showed that iPSI(2L)-EDL outperformed other existing methods for both promoter prediction and identification of strong promoter type and weak promoter type, the AUC and MCC for the iPSI(2L)-EDL in identifying promoter were improved by 2.23% and 2.96% compared to that of PseDNC-DL on independent testing data, respectively, while the AUC and MCC for the iPSI(2L)- EDL were increased by 3.74% and 5.86% in predicting promoter strength type, respectively. The results of ablation experiments indicate that CNN plays a crucial role in recognizing promoters, the importance of different input positions and long-range dependency relationships among features are helpful for recognizing promoters. Furthermore, to make it easier for most experimental scientists to get the results they need, a userfriendly web server has been established and can be accessed at http://47.94.248.117/IPSW(2L)-EDL.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3