wLEACH: Real-Time Meteorological Data Based Wind LEACH

Author:

Monali Chaudhari1ORCID,Bhaskar Anand K.A.1ORCID

Affiliation:

1. Department of Electronics & Communication Engineering, Sir Padampat Singhania University, Bhatewar, Udaipur, Rajasthan, India

Abstract

Introduction: Nowadays, Wireless Sensor Network (WSN) plays an important role in various fields. The limited power capability of the sensor nodes in the WSN brings constraints on the performance of the network. Low Energy Adaptive Clustering Hierarchy (LEACH) is a promising protocol for WSN that suffers from higher energy consumption. Objective: The primary objective of this study is to give an alternate harvesting resource power to sensor nodes in the LEACH algorithm which can be equally capable of providing the same or sometimes better results. Methods: This study is based on real-time meteorological data. A real-time wind speed data is taken for the starting of a day to the end of the day on an hourly basis from the weather forecast. Now to convert this rotational energy into electrical energy, we used two types of wind turbines. For the proposed methodology, a micro wind turbine generator and 300watt wind turbine are used. Then this converted electrical energy is given to sensor nodes. For the clustering, the wind power operated nodes are given maximum preference to be elected as the cluster heads based on realtime wind meteorological data. We consider 10 wind-powered sensor nodes. As we increase the number of wind-powered sensor nodes in the network, the performance is increased in terms of a lifetime but then increases the complexity of the network. These wind-powered nodes remain alive in the network. Since the deployment of the sensor nodes is random, each simulation runs for 5 times and the average of first node dead, half node dead and last node dead is considered. Results: The experimental results for the micro wind turbine generator are compared based on with and without the MPPT controller. MPPT controller gives the maximum power by using the tip speed ratio control, power signal feedback control, and hill climb search control method. Therefore, the network lifetime should be higher for the MPPT based wind generator. Network lifetime and Energy consumption are compared for a micro wind turbine generator and 300watt wind turbine. Finally, the performance of the proposed system is compared with the modified solar LEACH implemented using real-time meteorological data. Conclusion: This paper has investigated the wind-based LEACH which uses the real-time meteorological data for the selection of the cluster head. Two types of wind generators are considered for the implementation and it is found that the performance of the commercial 300W wind turbine and the micro wind turbine with and without MPPT is almost similar since the data from both wind turbines are given on hourly basis. The performance of the wLEACH is compared with the sLEACH which shows that the network lifespan of the wLEACH is also nearly the same compared to the sLEACH. However, it was found that wind power generation is cheaper and efficient than solar power generation. Therefore, it is inferred that this proposed wLEACH provides a costefficient solution.

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved wLEACH Based on Real-time Wind Speed Meteorological Data;Wireless Personal Communications;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3