An Enhanced Spatial Correlation Framework for Heterogenous Wireless Sensor Networks

Author:

Jadhav Sunayana1,Daruwala Rohin1

Affiliation:

1. Electronics Engineering, VJTI, University of Mumbai, Mumbai, India

Abstract

Background: Event detection and monitoring applications involve highly populated sensor nodes in Wireless Sensor Networks (WSNs). Dense deployment of nodes leads to correlated sensor observations in the spatial and temporal domain. Most of the previous works focused on constant sensing radii for spatially correlated sensor observations. However, in real time scenario, the sensor nodes may have variable sensing coverage areas, which comprise a Heterogeneous WSN. background: Spatial correlation model discussed in prior literature focused on Homogeneous sensing of sensor nodes. But, real time scenario the condition changes due to interferences obstructing sensing areas. Also, different manufacturers may provide different specifications for sensing areas, thus resulting into Heterogeneous sensing. Objective: To address this issue, we present an Enhanced Weighted Spatial Correlation Model for Heterogeneous sensor nodes in WSNs. Method: The mathematical framework considers the spatial coordinates of sensor nodes, the distances between the sensor nodes, and their sensing coverage. Furthermore, the correlation coefficient is calculated in terms of overlapping areas for randomly deployed nodes. Performance of the correlation model is evaluated and analyzed in terms of event distortion function. In addition to this, a macro and micro-zone concept is introduced, wherein sensor information is weighted for better event estimation at the sink node. Moreover, dynamic weighing of nodes like Inverse, Shepard’s and Gaussian distance weighing algorithms are simulated and analyzed for minimal event distortion. Over and above, the system performance is evaluated for different approaches considering reporting nodes with and without clustering of sensor nodes for macro and micro-zone concept. Simulation results for the Enhanced Weighted Spatial Correlation Model developed are obtained using MATLAB software. method: In order to evaluate the performance of the enhanced correlation model considering Macro and Micro-zone concept, simulations are carried out inMATLAB. Simulations are performed for ‚ trials and averaging of the values are finally used for analysis of results. Results: The comparative study shows an improved system performance in terms of minimal distortion obtained for non-clustered nodes; thereby reducing the computational complexity of cluster formation. Furthermore, the dynamic weighing algorithms outperform the existing fixed weighing algorithms for the correlation model with the lowest distortion function. Conclusion: Moreover, in the above algorithms, the event distortion gradually decreases and later becomes constant with the increase in the number of representative nodes. Hence, it illustrates that minimal distortion can be achieved by activating lesser number of representative nodes, thereby preserving the energy of other sensor nodes and increasing the lifetime of WSNs.

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3