Performance Enhancement of FSO System using Modified Exponentiated Weibull Channel Model

Author:

Pradhan Himansu Shekhar1ORCID

Affiliation:

1. Department of Electronics and Communication Engineering, NIT Warangal, Warangal, (T.S.), India

Abstract

Background: In free space optics (FSO) communication system, turbulence in the atmosphere leads to the intensity fluctuations of the received signal at the receiver end. Due to this reason, the performance of the free space optical communication system gets affected and results in fading of the received signal. Objectives: Performance improvement of FSO system using sophisticated channel modelling and fading mitigation techniques. Methods: This paper presents the performance improvement of the FSO system using a modified Exponentiated Weibull (MEW) channel model. Moreover, the performance of the FSO system is compared using different channel models such as Gamma-Gamma and Exponentiated Weibull. Results: The results in bit error rate (BER) with respect to different signal to noise ratio (SNR) are obtained using MEW, Gamma-Gamma, and Exponentiated Weibull channel models. In addition, BER is calculated for different aperture sizes such as 1.8, 5, and 13 mm using the proposed channel model to improve the performance of the FSO system. Similarly, the relay assisted technique is utilized to calculate the BER using the proposed channel model. Conclusion: An improvement of free space optical communication system is presented in terms of fading using channel modelling at different atmospheric turbulence conditions. An appropriate channel model is proposed for improving the performance of the FSO communication system using fading mitigation techniques. The proposed MEW channel model best describes the strong atmospheric turbulence induced fading. In addition, the performance of the free space optics system is improved using fading mitigation techniques such as aperture averaging and relay assisted FSO system.

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3