Analysis of MMSE Multiuser Detector in a Low-density Parity Check Coded Large Scale MIMO OFDM

Author:

Shoukath Shefin1,Haris P. Abdul2

Affiliation:

1. Department of ECE, College of Engineering Trivandrum, University of Kerala, Thiruvananthapuram, India

2. Department of ECE, A P J Abdul Kalam Technological University, Thiruvananthapuram, India

Abstract

Background: Large-scale MIMO OFDM technique satisfies the demands on performance and the service quality preferred in wireless communication systems. Since numerous antenna terminals have been incorporated in the base station, multiuser detection is crucial for retrieving the data appropriately. Thus, the complexities of the detectors increase rapidly in large-scale MIMO OFDM schemes. Objective: This work is a solution to achieve an extensively high rate of data transmission, which will help improve the capacity of the LS MIMO OFDM system. Methods: A unique detection approach of multiuser detection in LS MIMO OFDM model with channel coding, like Low Density Parity Check Codes (LDPC), is suggested in this paper. The LDPCcoded large-scale MIMO OFDM system has also been analysed in the study with users of around ten at the transmitter and several antennas in the base station. Results: BER of the LDPC-coded LS MIMO OFDM exhibited a waterfall region for SNR greater than 6dB as the study has been done with different decoding iterations. The BER performance worsened with the increase in modulation symbols. The study has shown how the BER performance has improved with respect to the increasing fading channels and subcarriers. Conclusion: The proposed system exhibited performance closer to the MIMO capacity with low complexity MMSE detection. The multiuser detector of LDPC-coded LS MIMO OFDM has been analysed by error rate in received bits (BER) with respect to different parameters, such as modulation orders, iteration values, receiving antennas, and OFDM subcarriers.

Publisher

Bentham Science Publishers Ltd.

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3